Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 125: 662-677, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375948

RESUMO

Smelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized. The heavy metal pollution was analyzed from a macroscopic point of view. The results indicated that Pb, Zn, As and Cd were common contaminants that were present in soils with extremely high concentrations. Because of the extreme carcinogenicity, genotoxicity and neurotoxicity that heavy metals pose, remediation of the soils contaminated by smelting is urgently required. The primary anthropogenic activities contributing to soil pollution in smelting areas and the progressive development of accurate source identification were performed. Due to the advantages of biominerals, the potential of biomineralization for heavy metal contaminated soils was introduced. Furthermore, the prospects of geochemical fraction analysis, combined source identification methods as well as several optimization methods for biomineralization are presented, to provide a reference for pollution investigation and remediation in smelting contaminated soils in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Chumbo/análise , Biomineralização , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental/análise , Solo , China , Zinco/análise , Medição de Risco
2.
Nanomaterials (Basel) ; 9(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866444

RESUMO

In order to better understand nanopore structure and fractal characteristics of lacustrine shale, nine shale samples from the Da'anzhai Member of Lower Jurassic Ziliujing Formation in the Sichuan Basin, southwestern (SW) China were investigated by total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and low-pressure N2 adsorption. Two fractal dimensions D1 and D2 (at the relative pressure of 0⁻0.5 and 0.5⁻1, respectively) were calculated from N2 adsorption isotherms using the Frenkel⁻Halsey⁻Hill (FHH) equation. The pore structure of the Lower Jurassic lacustrine shale was characterized, and the fractal characteristics and their controlling factors were investigated. Then the effect of fractal dimensions on shale gas storage and production potential was discussed. The results indicate that: (1) Pore types in shale are mainly organic-matter (OM) and interparticle (interP) pores, along with a small amount of intraparticle (intraP) pores, and that not all grains of OM have the same porosity. The Brunauer⁻Emmett⁻Teller (BET) surface areas of shale samples range from 4.10 to 8.38 m²/g, the density-functional-theory (DFT) pore volumes range from 0.0076 to 0.0128 cm³/g, and average pore diameters range from 5.56 to 10.48 nm. (2) The BET surface area shows a positive correlation with clay minerals content and quartz content, but no obvious relationship with TOC content. The DFT pore volume shows a positive correlation with TOC content and clay minerals content, but a negative relationship with quartz content. In addition, the average pore diameter shows a positive correlation with TOC content and a negative relationship with quartz content, but no obvious relationship with clay minerals content. (3) Fractal dimension D1 is mainly closely associated with the specific surface area of shale, suggesting that D1 may represent the pore surface fractal dimension. Whereas fractal dimension D2 is sensitive to multiple parameters including the specific surface area, pore volume, and average pore diameter, suggesting that D2 may represent the pore structure fractal dimension. (4) Shale with a large fractal dimension D1 and a moderate fractal dimension D2 has a strong capacity to store both adsorbed gas and free gas, and it also facilitates the exploitation and production of shale gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA