Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Curr Stem Cell Res Ther ; 19(3): 292-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36915985

RESUMO

Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.


Assuntos
Doenças da Córnea , Transplante de Córnea , Epitélio Corneano , Células-Tronco Pluripotentes Induzidas , Humanos , Córnea/patologia , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Doenças da Córnea/terapia , Transplante de Córnea/métodos , Células Epiteliais
2.
Fitoterapia ; 169: 105606, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442484

RESUMO

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Assuntos
Limoninas , Estrutura Molecular , Limoninas/farmacologia , Limoninas/química , Anti-Inflamatórios/farmacologia , Citocinas , Fator de Necrose Tumoral alfa/metabolismo
3.
Cell Mol Neurobiol ; 43(2): 469-489, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103872

RESUMO

Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Exossomos , Células-Tronco Mesenquimais , Humanos , Lesões Encefálicas Traumáticas/terapia , Neurogênese
4.
Biomed Res Int ; 2022: 8227314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017387

RESUMO

BPA is a known endocrine-disrupting agent that is capable of binding to the estrogen receptor and has exhibited adverse effects in many laboratory animal and in vitro studies. Moreover, it also been shown to have estrogenic, antiandrogenic, inflammatory, and oxidative properties. The widespread presence of BPA in the environment presents a considerable threat to humans. BPA has been shown to be leached into the human ecosystem, where it is commonly found in food products consumed by humans. Although the concentration is relatively low, its prolonged consumption may cause a variety of deleterious health effects. The liver is an important organ for metabolizing and detoxifying toxic metabolites to protect organisms from potentially toxic chemical insults. BPA that is ingested will be eliminated by the liver. However, it has also induced hepatoxicity and injury via various mechanisms. To find research demonstrating the effects of BPA on kidney, a number of databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched. Thus, this review summarizes the research on the relationship between BPA and its effects on the liver-derived from animals and cellular studies. The underlying mechanism of liver injury caused by BPA is also elucidated.


Assuntos
Disruptores Endócrinos , Animais , Compostos Benzidrílicos/química , Compostos Benzidrílicos/toxicidade , Ecossistema , Disruptores Endócrinos/toxicidade , Humanos , Fígado , Fenóis
5.
J Ethnopharmacol ; 297: 115547, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35870688

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Tribulus , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Preparações Farmacêuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
6.
Sci Rep ; 11(1): 19265, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584147

RESUMO

Gene therapy revolves around modifying genetic makeup by inserting foreign nucleic acids into targeted cells via gene delivery methods to treat a particular disease. While the genes targeted play a key role in gene therapy, the gene delivery system used is also of utmost importance as it determines the success of gene therapy. As primary cells and stem cells are often the target cells for gene therapy in clinical trials, the delivery system would need to be robust, and viral-based entries such as lentiviral vectors work best at transporting the transgene into the cells. However, even within lentiviral vectors, several parameters can affect the functionality of the delivery system. Using cardiac-derived c-kit expressing cells (CCs) as a model system, this study aims to optimize lentiviral production by investigating various experimental factors such as the generation of the lentiviral system, concentration method, and type of selection marker. Our findings showed that the 2nd generation system with pCMV-dR8.2 dvpr as the packaging plasmid produced a 7.3-fold higher yield of lentiviral production compared to psPAX2. Concentrating the virus with ultracentrifuge produced a higher viral titer at greater than 5 × 105 infectious unit values/ml (IFU/ml). And lastly, the minimum inhibitory concentration (MIC) of puromycin selection marker was 10 µg/mL and 7 µg/mL for HEK293T and CCs, demonstrating the suitability of antibiotic selection for all cell types. This encouraging data can be extrapolated and applied to other difficult-to-transfect cells, such as different types of stem cells or primary cells.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transfecção/métodos , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo
7.
Nat Commun ; 12(1): 4997, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404774

RESUMO

Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro.


Assuntos
Agregação Celular/fisiologia , Técnicas de Cocultura , Miócitos Cardíacos/fisiologia , Família Aldeído Desidrogenase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteína Morfogenética Óssea 4 , Cálcio/metabolismo , Diferenciação Celular , Genes do Tumor de Wilms , Humanos , Células-Tronco Pluripotentes Induzidas , Fator de Crescimento Insulin-Like II/metabolismo , Mesoderma , Miócitos de Músculo Liso , Retinal Desidrogenase/metabolismo , Semaforinas , Células-Tronco , Proteínas com Domínio T/metabolismo
8.
Regen Med ; 15(3): 1381-1397, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32253974

RESUMO

Aim: As a strategy to improve the outcome of ex vivo cultivated corneal epithelial transplantation, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is investigated in promoting corneal epithelial growth and functions. Materials & methods: Human telomerase-immortalized corneal epithelial cells were characterized and its functions evaluated by scratch migration assay, cellular senescence, HLA expression and spheres formation with hUC-MSC. Results: Expression of corneal epithelial markers was influenced by the duration and method of co-culture. Indirect co-culture improved cellular migration and delayed senescence when treated after 3 and 5 days. hUC-MSC downregulated expression of HLA Class I and II in IFN-γ-stimulated human telomerase-immortalized corneal epithelial cells. Conclusion: hUC-MSC promote corneal epithelial growth and functions after treatment with hUC-MSC.


Assuntos
Doenças da Córnea/terapia , Epitélio Corneano/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Regeneração , Cordão Umbilical/citologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Epitélio Corneano/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
9.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698679

RESUMO

Cardiac c-kit cells show promise in regenerating an injured heart. While heart disease commonly affects elderly patients, it is unclear if autologous cardiac c-kit cells are functionally competent and applicable to these patients. This study characterised cardiac c-kit cells (CCs) from aged mice and studied the effects of human Wharton's Jelly-derived mesenchymal stem cells (MSCs) on the growth kinetics and cardiac differentiation of aged CCs in vitro. CCs were isolated from 4-week- and 18-month-old C57/BL6N mice and were directly co-cultured with MSCs or separated by transwell insert. Clonogenically expanded aged CCs showed comparable telomere length to young CCs. However, these cells showed lower Gata4, Nkx2.5, and Sox2 gene expressions, with changes of 2.4, 3767.0, and 4.9 folds, respectively. Direct co-culture of both cells increased aged CC migration, which repopulated 54.6 ± 4.4% of the gap area as compared to aged CCs with MSCs in transwell (42.9 ± 2.6%) and CCs without MSCs (44.7 ± 2.5%). Both direct and transwell co-culture improved proliferation in aged CCs by 15.0% and 16.4%, respectively, as traced using carboxyfluorescein succinimidyl ester (CFSE) for three days. These data suggest that MSCs can improve the growth kinetics of aged CCs. CCs retaining intact telomere are present in old hearts and could be obtained based on their self-renewing capability. Although these aged CCs with reduced growth kinetics are improved by MSCs via cell-cell contact, the effect is minimal.


Assuntos
Diferenciação Celular , Senescência Celular , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Geleia de Wharton/citologia , Envelhecimento/fisiologia , Animais , Proliferação de Células , Células Clonais , Humanos , Cinética , Camundongos Endogâmicos C57BL , Telomerase/metabolismo , Homeostase do Telômero
10.
Oxid Med Cell Longev ; 2019: 1202676, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531177

RESUMO

Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and ß-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Mel , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Malásia , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia
11.
Regen Ther ; 11: 8-16, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31193142

RESUMO

OBJECTIVE: Myocardial infarction remains the number one killer disease worldwide. Cellular therapy using cardiac c-kit cells (CCs) are capable of regenerating injured heart. Previous studies showed mesenchymal stem cell-derived (MSC) extracellular matrices can provide structural support and are capable of regulating stem cell functions and differentiation. This study aimed to evaluate the effects of human MSC-derived matrices for CC growth and differentiation. METHODS: Human Wharton's Jelly-derived MSCs were cultured in ascorbic acid supplemented medium for 14 days prior to decellularisation using two methods. 1% SDS/Triton X-100 (ST) or 20 mM ammonia/Triton X-100 (AT). CCs isolated from 4-week-old C57/BL6N mice were cultured on the decellularised MSC matrices, and induced to differentiate into cardiomyocytes in cardiogenic medium for 21 days. Cardiac differentiation was assessed by immunocytochemistry and qPCR. All data were analysed using ANOVA. RESULTS: In vitro decellularisation using ST method caused matrix delamination from the wells. In contrast, decellularisation using AT improved the matrix retention up to 30% (p < 0.05). This effect was further enhanced when MSCs were cultured in cardiogenic medium, with a matrix retention rate up to 90%. CCs cultured on cardiogenic MSC matrix (ECMcardio), however, did not significantly improve its proliferation after 3 days (p < 0.05), but the viability of CCs was augmented to 67.2 ± 0.7% after 24-h exposure to H2O2 stress as compared to 42.9 ± 0.5% in control CCs (p < 0.05). Furthermore, CCs cultured on cardiogenic MSC matrices showed 1.7-fold up-regulation in cardiac troponin I (cTnI) gene expression after 21 days (p < 0.05). CONCLUSION: Highest matrix retention can be obtained by decellularization using Ammonia/Triton-100 in 2-D culture. ECMcardio could rescue CCs from exogenous hydrogen peroxide and further upregulated the cardiac gene expressions, offering an alternate in vitro priming strategy to precondition CCs which could potentially enhance its survival and function after in vivo transplantation.

12.
J Cell Biochem ; 120(6): 9104-9116, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548289

RESUMO

Stem cell therapy offers hope to reconstitute injured myocardium and salvage heart from failing. A recent approach using combinations of derived Cardiac-derived c-kit expressing cells (CCs) and mesenchymal stem cells (MSCs) in transplantation improved infarcted hearts with a greater functional outcome, but the effects of MSCs on CCs remain to be elucidated. We used a novel two-step protocol to clonogenically amplify colony forming c-kit expressing cells from 4- to 6-week-old C57BL/6N mice. This method yielded highly proliferative and clonogenic CCs with an average population doubling time of 17.2 ± 0.2, of which 80% were at the G1 phase. We identified two distinctly different CC populations based on its Sox2 expression, which was found to inversely related to their nkx2.5 and gata4 expression. To study CCs after MSC coculture, we developed micron-sized particles of iron oxide-based magnetic reisolation method to separate CCs from MSCs for subsequent analysis. Through validation using the sex and species mismatch CC-MSC coculture method, we confirmed that the purity of the reisolated cells was greater than 85%. In coculture experiment, we found that MSCs prominently enhanced Ctni and Mef2c expressions in Sox2 pos CCs after the induction of cardiac differentiation, and the level was higher than that of conditioned medium Sox2 pos CCs. However, these effects were not found in Sox2 neg CCs. Immunofluorescence labeling confirmed the presence of cardiac-like cells within Sox2 pos CCs after differentiation, identified by its cardiac troponin I and α-sarcomeric actinin expressions. In conclusion, this study shows that MSCs enhance CC differentiation toward cardiac myocytes. This enhancement is dependent on CC stemness state, which is determined by Sox2 expression.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Dexametasona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell Tissue Res ; 375(2): 383-396, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30232595

RESUMO

Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.


Assuntos
Técnicas de Cultura de Células/normas , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
14.
Nutrients ; 10(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037045

RESUMO

Spices that are rich in polyphenols are metabolized to a convergent group of phenolic/aromatic acids. We conducted a dose-exposure nutrikinetic study to investigate associations between mixed spices intake and plasma concentrations of selected, unconjugated phenolic/aromatic acids. In a randomized crossover study, 17 Chinese males consumed a curry meal containing 0 g, 6 g, and 12 g of mixed spices. Postprandial blood was drawn up to 7 h at regular intervals and plasma phenolic/aromatic acids were quantified via liquid chromatography tandem mass spectrometry (LC-MS/MS). Cinnamic acid (CNA, p < 0.0001) and phenylacetic acid (PAA, p < 0.0005) concentrations were significantly increased with mixed spices consumption, although none of the other measured phenolic/aromatic acids differ significantly between treatments. CNA displayed a high dose-exposure association (R² > 0.8, p < 0.0001). The adjusted mean area under the plasma concentration-time curve until 7 h (AUC0⁻7 h) for CNA during the 3 increasing doses were 8.4 ± 3.4, 376.1 ± 104.7 and 875.7 ± 291.9 nM.h respectively. Plasma CNA concentration may be used as a biomarker of spice intake.


Assuntos
Cinamatos/sangue , Dieta , Polifenóis/sangue , Período Pós-Prandial , Especiarias , Adulto , Área Sob a Curva , Biomarcadores/sangue , Capsicum/química , Cromatografia Líquida , Cinnamomum zeylanicum/química , Coriandrum/química , Estudos Cross-Over , Cuminum/química , Curcuma/química , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Humanos , Masculino , Fenilacetatos/sangue , Extratos Vegetais/sangue , Plasma/metabolismo , Especiarias/análise , Especiarias/estatística & dados numéricos , Adulto Jovem
15.
BMC Complement Altern Med ; 18(1): 210, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980198

RESUMO

BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau. has traditionally been using in South East Asia countries to manage cancer. However, scientific evidence is generally lacking to support this traditional claim. This study aims to investigate the in vitro, ex-vivo and in vivo effects of C. nutans extracts on angiogenesis. METHODS: C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed. RESULTS: The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM. CONCLUSION: In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.


Assuntos
Acanthaceae/química , Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Aorta/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Folhas de Planta/química , Água
16.
Cell Biol Int ; 41(6): 697-704, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28403524

RESUMO

Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+ hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107 after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108 and 7.0 × 107 ± 3.3 × 106 respectively, P < 0.001). Although no significant differences in RBC differentiation were observed between groups at passage IV, the number of enucleated cell was greater compared to earlier passages, indicating successful RBC differentiation. Cord blood-derived CD34+ HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Sangue Fetal/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Geleia de Wharton/citologia
17.
Asian J Transfus Sci ; 10(2): 145-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605853

RESUMO

BACKGROUND: Cryoprecipitate is generally used to treat bleeding patients with hypofibrinogenemia, and the transfusion decision is guided based on published guidelines. AIM: This study aimed to evaluate the practice appropriateness in accordance to cryoprecipitate transfusion guidelines in Hospital Kuala Lumpur. METHODOLOGY: This cross-sectional study of 117 cryoprecipitates transfused adult patients was conducted in Kuala Lumpur Hospital from January to June 2012. The compliance of the indication of cryoprecipitate was considered as appropriate if indicated for patients who have hypofibrinogenemia (<1.0 g/L) with bleeding, or otherwise inappropriate if pretransfusion fibrinogen level was more than 1.0 g/L, pretransfusion fibrinogen level was not examined and posttransfusion fibrinogen level more than 1.5 g/L. RESULTS: Most of the cryoprecipitate prescriptions were found to be inappropriate, which read 81.2% (95% confidence interval = 0.740, 0.880). Patients who underwent neurovascular surgery were the major recipient of cryoprecipitate, but majority of the prescription was found not appropriate. The decision to transfuse cryoprecipitate was found mostly appropriate when was guided by fibrinogen (52.2%), but the percentage dropped to 10.6% when pretransfusion fibrinogen test was not performed. Regrettably, only 19.7% of total cryoprecipitate were given based on pretransfusion fibrinogen level.

18.
PLoS One ; 9(5): e96800, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802273

RESUMO

Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.


Assuntos
Epitélio Corneano/citologia , Mel/análise , Estresse Oxidativo , Células-Tronco/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinas/genética , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Sequestradores de Radicais Livres/química , Furanos/análise , Furanos/isolamento & purificação , Furanos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/toxicidade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-23533485

RESUMO

Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100 µ g/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography-mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.

20.
J Cardiovasc Transl Res ; 5(5): 678-87, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752803

RESUMO

To investigate the effects of age and disease on endogenous cardiac progenitor cells, we obtained right atrial and left ventricular epicardial biopsies from patients (n = 22) with chronic ischaemic heart disease and measured doubling time and surface marker expression in explant- and cardiosphere-derived cells (EDCs, CDCs). EDCs could be expanded from all atrial biopsy samples, but sufficient cells for cardiosphere culture were obtained from only 8 of 22 ventricular biopsies. EDCs from both atrium and ventricle contained a higher proportion of c-kit+ cells than CDCs, which contained few such cells. There was wide variation in expression of CD90 (atrial CDCs 5-92 % CD90+; ventricular CDCs 11-89 % CD90+), with atrial CDCs cultured from diabetic patients (n = 4) containing 1.6-fold more CD90+ cells than those from non-diabetic patients (n = 18). No effect of age or other co-morbidities was detected. Thus, CDCs from atrial biopsies may vary in their therapeutic potential.


Assuntos
Proliferação de Células , Separação Celular , Ventrículos do Coração/patologia , Isquemia Miocárdica/patologia , Pericárdio/patologia , Células-Tronco/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Biópsia , Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular/métodos , Doença Crônica , Diabetes Mellitus/patologia , Feminino , Citometria de Fluxo , Átrios do Coração/imunologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Ventrículos do Coração/imunologia , Ventrículos do Coração/metabolismo , Humanos , Hipercolesterolemia/patologia , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , Pericárdio/imunologia , Pericárdio/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Índice de Gravidade de Doença , Fumar/patologia , Esferoides Celulares , Células-Tronco/imunologia , Células-Tronco/metabolismo , Antígenos Thy-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA