Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 57(14): 5904-18, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24960549

RESUMO

Curcumin is known to trigger ER-stress induced cell death of acute promyelocytic leukemic (APL) cells by intercepting the degradation of nuclear co-repressor (N-CoR) protein which has a key role in the pathogenesis of APL. Replacing the heptadienedione moiety of curcumin with a monocarbonyl cross-conjugated dienone embedded in a tetrahydrothiopyranone dioxide ring resulted in thiopyranone dioxides that were more resilient to hydrolysis and had greater growth inhibitory activities than curcumin on APL cells. Several members intercepted the degradation of misfolded N-CoR and triggered the signaling cascade in the unfolded protein response (UPR) which led to apoptotic cell death. Microarray analysis showed that genes involved in protein processing pathways that were germane to the activation of the UPR were preferentially up-regulated in treated APL cells, supporting the notion that the UPR was a consequential mechanistic pathway affected by thiopyranone dioxides. The Michael acceptor reactivity of the scaffold may have a role in exacerbating ER stress in APL cells.


Assuntos
Curcumina/análogos & derivados , Óxidos S-Cíclicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Óxidos S-Cíclicos/síntese química , Óxidos S-Cíclicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 71: 67-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275249

RESUMO

Osteosarcoma is a primary bone malignancy with aggressive metastatic potential and poor prognosis rates. In our earlier work we have investigated the therapeutic potential of curcumin as an anti-invasive agent in osteosarcoma by its ability to regulate the Wnt/ß-catenin signaling pathway. However, the clinical use of curcumin is limited owing to its low potency and poor pharmacokinetic profile. In this study, an attempt was made to achieve more potent Wnt inhibitory activity in osteosarcoma cells by carrying out synthetic chemical modifications of curcumin. We synthesized a total of five series consisting of 43 curcumin analogs and screened in HEK293T cells for inhibition of ß-catenin transcriptional activity. Six promising analogs, which were 6.5- to 60-fold more potent than curcumin in inhibiting Wnt activity, were further assessed for their anti-invasive activity and Wnt inhibitory mechanisms. Western blot analysis showed disruption of ß-catenin protein nuclear translocation following treatment with analogs 2f, 3c and 4f. Using transwell assays, we also found that these compounds were more potent than 1a (curcumin) in impeding the invasion of osteosarcoma cells, possibly through suppressing MMP-9 activity. Structure-activity-relationship studies revealed that Wnt inhibitory effects could be enhanced by shortening and restraining the flexibility of the 7-carbon linker moiety connecting the terminal aromatic rings of curcumin and substituting both rings with appropriate substituents. Our results demonstrate that the synthesized curcumin analogs are more potent Wnt inhibitors in osteosarcoma cell lines as compared to parental curcumin and are good lead compounds for further development. Future in vivo tests with these compounds will define their therapeutic potentials as promising drug candidates for clinical treatment of osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Curcumina/farmacologia , Osteossarcoma/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Antineoplásicos/química , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Curcumina/análogos & derivados , Células HEK293 , Humanos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Osteossarcoma/metabolismo , Osteossarcoma/patologia
3.
ChemMedChem ; 7(9): 1567-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22887959

RESUMO

Curcumin arrests the proliferation of acute promyelocytic leukemia (APL) cells by stabilizing the misfolded nuclear receptor co-repressor (N-CoR) protein, thereby sensitizing APL cells to apoptosis induced by the unfolded protein response. This phenomenon was attributed to inhibition of the proteasomal and protease-induced breakdown of misfolded N-CoR by curcumin. Curcumin is, however, a modest inhibitor and affected the viability of APL cells at micromolar concentrations. Modifying curcumin at its conjugated ß-diketone linker and terminal phenyl rings yielded potent congeners with sub-micromolar growth inhibitory activities which selectively kill APL cells over non-APL leukemic and nonmalignant cells. Analogues with pronounced APL-selective anti-proliferative activities, as observed in representative dibenzylidenecyclohexanones and dibenzylidenecyclopentanones, strongly promoted the accumulation of misfolded and nonfunctional N-CoR at significantly lower concentrations than their growth inhibitory IC(50) values. These compounds also inhibited the human 20S proteasome in an enzyme-based assay, thus providing convincing support for the prevailing hypothesis that impeding the degradation of N-CoR is a key mechanistic event contributing to APL cell death.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas Correpressoras/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Correpressoras/análise , Humanos , Leucemia Promielocítica Aguda/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA