Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 10(14): 3963-3971, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35708018

RESUMO

Currently, there is no effective method to prevent the formation of hypertrophic scars and keloids, which can cause severe physical and psychological burdens to patients. Secreted protein acidic and cysteine-rich (SPARC) is involved in wound fibrosis by modulating fibroblast functions, causing excessive collagen deposition during wound healing. Thus, the reduction in SPARC gene expression after wounding can contribute to the downstream reduction in collagen production at the wound site and prevent scar formation. In this study, a dissolvable and biocompatible hyaluronic acid (HA) microneedle patch loaded with nanoplexes containing tyramine-modified gelatin and siRNA for SPARC (siSPARC/Gtn-Tyr) was investigated for topical scar prevention. Tyramine-modified gelatin (Gtn-Tyr) provides electrostatic protection and enhances cell internalization for siSPARC. In vitro studies using human dermal fibroblasts showed that both siSPARC/Gtn-Tyr nanoplexes and siSPARC/Gtn-Tyr-loaded microneedle patches can significantly reduce SPARC gene expression (P < 0.05) and do not cause discernable cytotoxic effects. Further studies using a mouse wound model demonstrate that the siSPARC/Gtn-Tyr-loaded microneedle patch can reduce collagen production during wound healing without triggering an immune response. When Gtn-Tyr-siSPARC is administered transdermally at the wound site, effective collagen reduction is achieved through silencing of the matricellular SPARC protein, thus promising the reduction of scar formation. Overall, the siSPARC/Gtn-Tyr loaded microneedle patch can potentially provide an effective transdermal anti-fibrotic treatment.


Assuntos
Cicatriz , Ácido Hialurônico , RNA Interferente Pequeno/genética , Colágeno/metabolismo , Fibrose , Gelatina , Humanos , Pele/metabolismo , Tiramina
2.
Small ; 16(8): e1906797, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003923

RESUMO

The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)-based multiplex proteins activation tool to ablate deep-tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300-fold enhancement of blue (450-470 nm) and red (590-610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light-induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep-tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single- and multiple-cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.


Assuntos
Técnicas de Ablação , Locomoção , Nanopartículas , Neurônios , Técnicas de Ablação/métodos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/efeitos da radiação , Raios Infravermelhos , Luz , Locomoção/efeitos dos fármacos , Nanopartículas/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Oxigênio Singlete/química
3.
Mater Sci Eng C Mater Biol Appl ; 75: 349-358, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415472

RESUMO

Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO2) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO2-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO2-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO2-treated ECM coating can be potentially used for various biomedical applications. The SC-CO2-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO2-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO2-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications.


Assuntos
Tecido Adiposo/química , Dióxido de Carbono , Proteínas da Matriz Extracelular , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Queratinócitos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Queratinócitos/citologia , Masculino
4.
ACS Nano ; 11(3): 2846-2857, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28221761

RESUMO

Nd3+-sensitized upconversion nanoparticles are among the most promising emerging fluorescent nanotransducers. They are activated by 808 nm irradiation, which features merits such as limited tissue overheating and deeper penetration depth, and hence are attractive for diagnostic and therapeutic applications. Recent studies indicate that ultrasmall nanoparticles (<10 nm) are potentially more suitable for clinical application due to their favorable biodistribution and safety profiles. However, upconversion nanoparticles in the sub-10 nm range suffer from poor luminescence due to their ultrasmall size and greater proportion of lattice defects. To reconcile these opposing traits, we adopt a combinatorial strategy of energy migration manipulation and crystal lattice modification, creating ultrasmall-superbright Nd3+-sensitized nanoparticles with 2 orders of magnitude enhancement in upconversion luminescence. Specifically, we configure a sandwich-type nanostructure with a Yb3+-enriched intermediate layer [Nd3+]-[Yb3+-Yb3+]-[Yb3+-Tm3+] to form a positively reinforced energy migration system, while introducing Ca2+ into the crystal lattice to reduce lattice defects. Furthermore, we apply the nanoparticles to 808 nm light-mediated drug release. The results indicate time-dependent cancer cells killing and better antitumor activities. These ultrasmall-superbright dots have unraveled more opportunities in upconversion photomedicine with the promise of potentially safer and more effective therapy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/química , Neodímio/química , Animais , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neodímio/administração & dosagem , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Temperatura , Células Tumorais Cultivadas
5.
J Biomed Mater Res A ; 101(3): 633-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22927021

RESUMO

Engineered nanomaterials have become prevalent in our everyday life. While the popularity of using nanomaterials in consumer products continues to rise, increasing awareness of nanotoxicology has also fuelled efforts to accelerate our understanding of the ill effects that different nanomaterials can bring to biological systems. In this study, we investigated the potential cytotoxicity and genotoxicity of three nanoparticles: titanium dioxide (TiO(2)), terbium-doped gadolinium oxide (Tb-Gd(2)O(3)), and poly(lactic-co-glycolic acid) (PLGA). To evaluate nanoparticle-induced genotoxicity more realistically, a human skin fibroblast cell line (BJ) with less mutated genotype compared with cancer cell line was used. The nanoparticles were first characterized by size, morphology, and surface charge. Cytotoxicity effects of the nanoparticles were then evaluated by monitoring the proliferation of treated BJ cells. Genotoxic influence was ascertained by profiling DNA damage via detection of γH2AX expression. Our results suggested that both TiO(2) and Tb-Gd(2)O(3) nanoparticles induced cytotoxicity in a dose dependent way on BJ cells. These two nanomaterials also promoted genotoxicity via DNA damage. On the contrary, PLGA nanoparticles did not induce significant cytotoxic or genotoxic effects on BJ cells.


Assuntos
Dano ao DNA , Fibroblastos/metabolismo , Gadolínio , Nanopartículas/química , Poliglactina 910 , Pele/metabolismo , Titânio , Proliferação de Células , Células Cultivadas , Citotoxinas/química , Citotoxinas/farmacologia , Fibroblastos/citologia , Gadolínio/química , Gadolínio/farmacologia , Regulação da Expressão Gênica , Histonas/biossíntese , Humanos , Masculino , Teste de Materiais , Poliglactina 910/química , Poliglactina 910/farmacologia , Pele/citologia , Titânio/química , Titânio/farmacologia
6.
Arch Toxicol ; 87(6): 1037-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415765

RESUMO

Nanosized hydroxyapatite (nHA) has been proposed as drug delivery vehicles because of its biocompatibility. While the possible risks of nHA inducing inflammation have been highlighted, the specific influence of varying nHA particle morphology is still unclear. In order to establish this understanding, nHA of four different shapes--needle (nHA-ND), plate (nHA-PL), sphere (nHA-SP) and rod (nHA-RD)--were synthesized. The particle effects with the concentration of 10-300 µg/mL on cytotoxicity, oxygen species generation, production of inflammatory cytokines (TNF-α and IL-6), particle-cell association and cellular uptake were evaluated on BEAS-2B and RAW264.7 cells. Results show that nHA-ND and nHA-PL induced the most significant cell death in BEAS-2B cultures compared to nHA-SP and nHA-RD. Necrosis-apoptosis assay by FITC Annexin V and propidium iodide (PI) staining revealed loss of the majority of BEAS-2B by necrosis. No significant cell death was recorded in RAW264.7 cultures exposed to any of the nHA groups. Correspondingly, no significant differences were observed in TNF-α level for RAW264.7 cells upon incubation with nHA of different shapes. In addition, nHA-RD exhibited a higher degree of particle-cell association and internalization in both BEAS-2B and RAW264.7 cells, compared to nHA-ND. The phenomena suggested that higher particle-cell association and increased cellular uptake of nHA need not result in increased cytotoxicity, indicating the importance of particle shape on cytotoxicity. Specifically, needle- and plate-shaped nHA induced the most significant cell-specific cytotoxicity and IL-6 expression but showed the least particle-cell association. Taken collectively, we demonstrated the shape-dependent effects of nHA on cytotoxicity, inflammatory cytokine expression and particle-cell association.


Assuntos
Durapatita/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Durapatita/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Conformação Molecular , Necrose , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
7.
Adv Healthc Mater ; 1(4): 470-4, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23184779

RESUMO

Nanomedicine: NIR-active N-TiO(2) /NaYF(4) :Yb,Tm nanocomposites (NCs) were synthesized for the first time and its potential applications in drug release and targeted cancer cell ablation are explored. Upon 980 nm laser irradiation, the anti-cAngptl4 Ab-conjugated N-TiO(2) /NaYF(4) :Yb,Tm NCs shows a significant increase in apoptotic A-5RT3 cells when compared with that of the unconjugated NCs. The mechanisms for NIR-induced photocatalysis, drug release and targeted cancer cell killing are proposed.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Fluoretos/química , Hipertermia Induzida/métodos , Nanocápsulas/uso terapêutico , Neoplasias Experimentais/terapia , Titânio/uso terapêutico , Ítrio/química , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Raios Infravermelhos/uso terapêutico , Nanocápsulas/efeitos da radiação , Titânio/efeitos da radiação
8.
Langmuir ; 26(14): 11631-41, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19961213

RESUMO

Herein, we describe the synthesis of functional and multifunctional nanoparticles (NPs), derived from our recent work, for bioimaging and biosensing applications. The functionalized NPs involve quantum dots (QDs), magnetic particles (MPs) and noble metal NPs for the aforementioned applications. A diverse silica coating approaches (reverse microemulsion and thin silanization) are delineated for the design of water-soluble NPs. We also review the synthesis of silica-coated bifunctional NPs consisting of MPs and QDs for live cell imaging of human liver cancer cells (HepG2) and mouse fibroblast cells (NIH-3T3). Using silica coated NPs, various NPs that are functionalized with antibody, oligonucleotide, biotin and dextran are efficiently used for protein detection.


Assuntos
Técnicas Biossensoriais/métodos , Imagem Molecular/métodos , Nanopartículas/química , Animais , Pesquisa Biomédica , Humanos , Dióxido de Silício/química
9.
J Inorg Biochem ; 104(2): 105-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19942292

RESUMO

The preparations of novel platinum and copper metallodendrimers are reported. Surface modified first generation (G0) poly(amidoamine) (PAMAM) dendritic Schiff base, prepared via a condensation reaction was coordinated with platinum chloride and copper chloride yielding [G0-Py(4)-[PtCl(2)](4)] (4D) and [G0-Py(4)-[CuCl(2)](7)] (7E) respectively. These functionalized hyper-branched complexes were characterized by IR spectroscopy and CHN analysis. 4D was further characterized through (1)H and (13)C spectroscopy, while 7E was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI/TOF) Mass Spectrometer. The cytotoxic effects of the compounds against cells of neoplastic origin (MOLT-4, MCF-7) and cells of benign origin (Chang Liver) were studied. Their cytotoxicities were then compared to their mono-nuclear analogues, [(MeCONHCH(2)CH(2)NCHPy)(PtCl(2))] (1D) and [(MeCONHCH(2)CH(2)NCHPy)(CuCl(2))] (1E). The multi-nuclear complexes showed increased cytotoxic activities as compared to their respective mono-nuclear compounds. Most notably, significant inhibitions were observed for 7E on all cell lines, in which its IC(50) values were 11.1+/-0.6, 10.2+/-1.5 and 8.7+/-0.7microM against MOLT-4, MCF-7 and Chang Liver cells respectively. The multi-nuclear copper-based complexes (7E) are therefore most effective against a cancer cell line (MOLT-4) and a cisplatin-resistant cell line (MCF-7).


Assuntos
Cobre/química , Dendrímeros/química , Dendrímeros/síntese química , Dendrímeros/farmacologia , Platina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Compostos Inorgânicos/síntese química , Compostos Inorgânicos/química , Compostos Inorgânicos/farmacologia , Microscopia Eletrônica de Varredura , Modelos Químicos , Estrutura Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Compostos de Platina/síntese química , Compostos de Platina/química , Compostos de Platina/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho
10.
J Biomed Mater Res A ; 93(1): 337-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19569209

RESUMO

The present study presents a new approach for evaluating in vitro cytotoxicity of nanoparticles. The approach is based on American National Standard ISO 10993-5. Hepatoma HepG2 and fibroblast NIH3T3 cell lines were incubated with nanoparticles, and their associated extracts were derived at 70 and 121 degrees C. Nanoparticles proposed as potential biomedical imaging probes were evaluated on the basis of the detection of metabolic activities and cell-morphology changes. In general, nanoparticles incubated directly with cells showed higher cytotoxicity than their associated extracts. CdSe and core-shell CdSe@ZnS quantum dots resulted in low cell viability for both cell lines. The cytotoxicity of the quantum dots was attributed to the Cd ion and the presence of the nanoparticle itself. A statistically significant (p < 0.05) decrease in cell viability was found in higher dosage concentrations. Rare earth nanoparticles and their extracts appear to affect NIH3T3 cells only, with cell viability as low as 71.4% +/- 4.8%. Magnetic nanoparticles have no observable effects on the cell viabilities for both cell lines. In summary, we found the following: (1) both direct incubation and extracts of nanoparticles are required for complete assessment of nanoparticle cytotoxicity, (2) the rare earth oxide nanoparticles are less cytotoxic than the Cd-based quantum dots, and (3) the extent of cytotoxicity is dependent upon the cell line.


Assuntos
Nanopartículas/toxicidade , Animais , Compostos de Cádmio/toxicidade , Morte Celular/efeitos dos fármacos , Extratos Celulares , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Células NIH 3T3 , Compostos de Selênio/toxicidade , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA