Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Circulation ; 149(23): 1833-1851, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38586957

RESUMO

BACKGROUND: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS: Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS: RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS: We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.


Assuntos
Aspartato-Amônia Ligase , Desdiferenciação Celular , Fator 4 Semelhante a Kruppel , Miócitos Cardíacos , Animais , Camundongos , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Células Cultivadas , Miócitos Cardíacos/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
2.
Sci Rep ; 13(1): 12484, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528224

RESUMO

The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized hACE2 (adenovirus expressing hACE2) NOD-SCID IL2Rγ-/- (NIKO) mouse model and compare infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2. Immune cell infiltration, inflammation, lung damage and pro-inflammatory cytokines and chemokines was observed in humanized hACE2 NIKO mice. Humanized hACE2 NIKO mice infected with the ancestral and mutant SARS-CoV-2 strain had lung inflammation and production of pro-inflammatory cytokines and chemokines. This model can aid in examining the pathological basis of SARS-CoV-2 infection in a human immune environment and evaluation of therapeutic interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pandemias , Modelos Animais de Doenças , Citocinas , Camundongos Transgênicos , Pulmão
3.
Nat Med ; 29(1): 190-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646800

RESUMO

Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.


Assuntos
Hiperaldosteronismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/cirurgia , Glândulas Suprarrenais/irrigação sanguínea , Hiperaldosteronismo/diagnóstico por imagem , Hiperaldosteronismo/cirurgia , Estudos Prospectivos , Estudos Retrospectivos
4.
Sci Adv ; 8(47): eadd1187, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417514

RESUMO

In recent decades, chimeric antigen receptor (CAR)-engineered immune effector cells have demonstrated promising antileukemic activity. Nevertheless, their efficacy remains unsatisfactory on solid cancers, plausibly due to the influence of tumor microenvironments (TME). In a novel mouse cancer model with a humanized immune system, tumor-infiltrating immunosuppressive leukocytes and exhausted programmed death protein-1 (PD-1)high T cells were found, which better mimic patient TME, allowing the screening and assessment of immune therapeutics. Particularly, membrane-bound programmed death ligand 1 (PD-L1) level was elevated on a tumor cell surface, which serves as an attractive target for natural killer (NK) cell-mediated therapy. Hematopoietic stem cell-derived CAR-NK (CAR pNK) cells targeting the PD-L1 showed enhanced in vitro and in vivo anti-solid tumor function. The CAR pNK cells and nivolumab resulted in a synergistic anti-solid tumor response. Together, our study highlights a robust platform to develop and evaluate the antitumor efficacy and safety of previously unexplored therapeutic regimens.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Camundongos , Animais , Receptores de Antígenos Quiméricos/metabolismo , Nivolumabe/farmacologia , Receptor de Morte Celular Programada 1 , Antígeno B7-H1/metabolismo , Neoplasias/metabolismo , Células Matadoras Naturais , Modelos Animais de Doenças , Ligantes , Microambiente Tumoral
5.
Eur Heart J ; 43(42): 4496-4511, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758064

RESUMO

AIMS: Cardiotoxicity leading to heart failure (HF) is a growing problem in many cancer survivors. As specific treatment strategies are not available, RNA discovery pipelines were employed and a new and powerful circular RNA (circRNA)-based therapy was developed for the treatment of doxorubicin-induced HF. METHODS AND RESULTS: The circRNA sequencing was applied and the highly species-conserved circRNA insulin receptor (Circ-INSR) was identified, which participates in HF processes, including those provoked by cardiotoxic anti-cancer treatments. Chemotherapy-provoked cardiotoxicity leads to the down-regulation of Circ-INSR in rodents and patients, which mechanistically contributes to cardiomyocyte cell death, cardiac dysfunction, and mitochondrial damage. In contrast, Circ-INSR overexpression prevented doxorubicin-mediated cardiotoxicity in both rodent and human cardiomyocytes in vitro and in a mouse model of chronic doxorubicin cardiotoxicity. Breast cancer type 1 susceptibility protein (Brca1) was identified as a regulator of Circ-INSR expression. Detailed transcriptomic and proteomic analyses revealed that Circ-INSR regulates apoptotic and metabolic pathways in cardiomyocytes. Circ-INSR physically interacts with the single-stranded DNA-binding protein (SSBP1) mediating its cardioprotective effects under doxorubicin stress. Importantly, in vitro transcribed and circularized Circ-INSR mimics also protected against doxorubicin-induced cardiotoxicity. CONCLUSION: Circ-INSR is a highly conserved non-coding RNA which is down-regulated during cardiotoxicity and cardiac remodelling. Adeno-associated virus and circRNA mimics-based Circ-INSR overexpression prevent and reverse doxorubicin-mediated cardiomyocyte death and improve cardiac function. The results of this study highlight a novel and translationally important Circ-INSR-based therapeutic approach for doxorubicin-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , RNA Circular/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/farmacologia , Proteômica , Apoptose , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/prevenção & controle , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Proteínas Mitocondriais
6.
Heart Fail Clin ; 18(3): 335-347, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35718410

RESUMO

The development of human-induced pluripotent stem cell-derived cardiac cell types has created a new paradigm in assessing drug-induced cardiotoxicity. Advances in genomics and epigenomics have also implicated several genomic loci and biological pathways that may contribute to susceptibility to cancer therapies. In this review, we first provide a brief overview of the cardiotoxicity associated with chemotherapy. We then provide a detailed summary of systems biology approaches being applied to elucidate potential molecular mechanisms involved in cardiotoxicity. Finally, we discuss combining systems biology approaches with iPSC technology to help discover molecular mechanisms associated with cardiotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Cardiotoxicidade/etiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Biologia de Sistemas
7.
Oxid Med Cell Longev ; 2022: 9180267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391931

RESUMO

Doxorubicin is an anthracycline widely used for the treatment of various cancers; however, the drug has a common deleterious side effect, namely a dose-dependent cardiotoxicity. Doxorubicin treatment increases the generation of reactive oxygen species, which leads to oxidative stress in the cardiac cells and ultimately DNA damage and cell death. The most common DNA lesion produced by oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoguanine), and the enzyme responsible for its repair is the 8-oxoguanine DNA glycosylase (OGG1), a base excision repair enzyme. Here, we show that the OGG1 deficiency has no major effect on cardiac function at baseline or with pressure overload; however, we found an exacerbation of cardiac dysfunction as well as a higher mortality in Ogg1 knockout mice treated with doxorubicin. Our transcriptomic analysis also showed a more extensive dysregulation of genes in the hearts of Ogg1 knockout mice with an enrichment of genes involved in inflammation. These results demonstrate that OGG1 attenuates doxorubicin-induced cardiotoxicity and thus plays a role in modulating drug-induced cardiomyopathy.


Assuntos
DNA Glicosilases , Cardiopatias , Animais , Cardiotoxicidade , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Doxorrubicina/efeitos adversos , Guanina/análogos & derivados , Camundongos , Camundongos Knockout , Estresse Oxidativo
8.
Sci Adv ; 7(41): eabh2443, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613780

RESUMO

Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high-throughput chemical library screens, retinoids are found to be potent promoters of MET that inhibit tumorigenicity in basal-like breast cancer. Cell state transitions are defined by reprogramming of lipid metabolism. Retinoids bind cognate nuclear receptors, which target lipid metabolism genes, thereby redirecting fatty acids for ß-oxidation in the mesenchymal cell state towards lipid storage in the epithelial cell state. Disruptions of key metabolic enzymes mediating this flux inhibit MET. Conversely, perturbations to fatty acid oxidation (FAO) rechannel fatty acid flux and promote a more epithelial cell phenotype, blocking EMT-driven breast cancer metastasis in animal models. FAO impinges on the epigenetic control of EMT through acetyl-CoA-dependent regulation of histone acetylation on EMT genes, thus determining cell states.

9.
Hepatology ; 74(3): 1395-1410, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33738839

RESUMO

BACKGROUND AND AIMS: Recent development of multiple treatments for human hepatocellular carcinoma (HCC) has allowed for the selection of combination therapy to enhance the effectiveness of monotherapy. Optimal selection of therapies is based on both HCC and its microenvironment. Therefore, it is critical to develop and validate preclinical animal models for testing clinical therapeutic solutions. APPROACH AND RESULTS: We established cell line-based or patient-derived xenograft-based humanized-immune-system mouse models with subcutaneous and orthotopic HCC. Mice were injected with human-specific antibodies (Abs) to deplete human immune cells. We analyzed the transcription profiles of HCC cells and human immune cells by using real-time PCR and RNA sequencing. The protein level of HCC tumor cells/tissues or human immune cells was determined by using flow cytometry, western blotting, and immunohistochemistry. The HCC tumor size was measured after single, dual-combination, and triple-combination treatment using N-(1',2-Dihydroxy-1,2'-binaphthalen-4'-yl)-4-methoxybenzenesulfonamide (C188-9), bevacizumab, and pembrolizumab. In this study, human immune cells in the tumor microenvironment were strongly selected and modulated by HCC, which promoted the activation of the IL-6/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in tumor cells and led to augmented HCC proliferation and angiogenesis by releasing angiogenic cytokines in humanized-immune-system mice with HCC. In particular, intratumor human cluster of differentiation-positive (hCD14+ ) cells could produce IL-33 through damage-associated molecular pattern/Toll-like receptor 4/activator protein 1, which up-regulated IL-6 in other intratumor immune cells and activated the JAK2/STAT3 pathway in HCC. Specific knockdown of the CD14 gene in human monocytes could impair IL-33 production induced by cell lysates. Subsequently, we evaluated the in vivo anti-HCC effect of C188-9, bevacizumab, and pembrolizumab. The results showed that the anti-HCC effect of triple-combination therapy was superior to that of single or dual treatments. CONCLUSIONS: Humanized-immune-system HCC mouse models are suitable for identifying targets from cancer and immune components and for testing combinational therapies.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neovascularização Patológica/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Bevacizumab/farmacologia , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Interleucina-6/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/genética , Camundongos , Naftóis/farmacologia , Transplante de Neoplasias , Neovascularização Patológica/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Sulfonamidas/farmacologia , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancers (Basel) ; 12(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331230

RESUMO

Immune checkpoint blockade (ICB) monotherapy shows early promise for the treatment of nasopharyngeal carcinoma (NPC) in patients. Nevertheless, limited representative NPC models hamper preclinical studies to evaluate the efficacy of novel ICB and combination regimens. In the present study, we engrafted NPC biopsies in non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain-null (NSG) mice and established humanized mouse NPC-patient-derived xenograft (NPC-PDX) model successfully. Epstein-Barr virus was detected in the NPC in both NSG and humanized mice as revealed by Epstein-Barr virus-encoded small RNA (EBER) in situ hybridization (ISH) and immunohistochemical (IHC) staining. In the NPC-bearing humanized mice, the percentage of tumor-infiltrating CD8+ cytotoxic T cells was lowered, and the T cells expressed higher levels of various inhibitory receptors, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) than those in blood. The mice were then treated with nivolumab and ipilimumab, and the anti-tumor efficacy of combination immunotherapy was examined. In line with paired clinical data, the NPC-PDX did not respond to the treatment in terms of tumor burden, whilst an immunomodulatory response was elicited in the humanized mice. From our results, human proinflammatory cytokines, such as interferon-gamma (IFN-γ) and interleukin-6 (IL-6) were significantly upregulated in plasma. After treatment, there was a decrease in CD4/CD8 ratio in the NPC-PDX, which also simulated the modulation of intratumoral CD4/CD8 profile from the corresponding donor. In addition, tumor-infiltrating T cells were re-activated and secreted more IFN-γ towards ex vivo stimulation, suggesting that other factors, including soluble mediators and metabolic milieu in tumor microenvironment may counteract the effect of ICB treatment and contribute to the tumor progression in the mice. Taken together, we have established and characterized a novel humanized mouse NPC-PDX model, which plausibly serves as a robust platform to test for the efficacy of immunotherapy and may predict clinical outcomes in NPC patients.

11.
J Leukoc Biol ; 107(5): 797-807, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922289

RESUMO

Recently a G-protein-coupled receptor, MAS Related GPR Family Member X2 (MRGPRX2), was identified as a specific receptor on human mast cells responsible for IgE independent adverse drug reactions (ADR). Although a murine homologue, Mrgprb2, has been identified for this receptor, its affinity for many ADR-causing drugs is poor making it difficult to undertake in vivo studies to examine mechanisms of ADR and to develop therapeutic strategies. Here, we have created humanized mice capable of generating MRGPRX2-expressing human MCs allowing for the study of MRGPRX2 MCs-mediated ADR in vitro as well as in vivo. Humanized mice were generated by hydrodynamic-injection of plasmids expressing human GM-CSF and IL-3 into NOD-scid IL2R-γ-/- strain of mice that had been transplanted with human hematopoietic stem cells. These GM/IL-3 humice expressed high numbers of tissue human MCs but the MRGPRX2 receptor expressed in MCs were limited to few body sites including the skin. Importantly, large numbers of MRGPRX2-expressing human MCs could be cultured from the bone marrow of GM/IL-3 humice revealing these mice to be an important source of human MCs for in vitro studies of MRGPRX2-related MCs activities. When GM/IL-3 humice were exposed to known ADR causing contrast agents (meglumine and gadobutrol), the humice were found to experience anaphylaxis analogous to the clinical situation. Thus, GM/IL-3 humice represent a valuable model for investigating in vivo interactions of ADR-causing drugs and human MCs and their sequelae, and these mice are also a source of human MRGPRX2-expressing MCs for in vitro studies.


Assuntos
Modelos Animais de Doenças , Toxidermias/imunologia , Mastócitos/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/imunologia , Animais , Meios de Contraste/toxicidade , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Interleucina-3/genética , Mastócitos/efeitos dos fármacos , Meglumina/toxicidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Compostos Organometálicos/toxicidade
12.
Psychooncology ; 28(7): 1506-1512, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087804

RESUMO

OBJECTIVES: Distress in patients with cancer is a significant problem that affects up to 32% of patients. Yet research indicates that 35% of cancer patients do maintain high levels of well-being. Resilience is one psychological factor implicated as being protective against distress; however, the mechanisms for this relationship are currently unknown. The present study aimed to explore emotion regulation as a potential mediator of the relationship between resilience and distress. METHODS: A cross-sectional survey examining emotional regulation, resilience, and distress was completed by 227 patients from two hospitals with heterogeneous cancer types. Measures included the Difficulties in Emotion Regulation Scale (DERS), the Connor Davidson Resilience Scale, and the Depression, Anxiety, Stress Scale. RESULTS: Difficulties in emotion regulation and resilience explained 33.2% of the variance in distress. Resilience had a significant direct effect on distress, accounting for 15.8% of the variance. However, this effect was no longer significant when difficulties in emotion regulation were controlled for. The indirect effect through difficulties in emotion regulation was significant, b = 0.009, 95% CI [-0.013,-0.007], suggesting that the effect of resilience on distress was fully mediated by emotion regulation. Parallel mediation analyses also examined the differential effects of the six DERS subscales on the relationship between resilience and distress. CONCLUSION: These findings suggest that emotion regulation is an important mediator of resilience in cancer. Hence, in patients with cancer, difficulties in emotion regulation (and the DERS specifically) might be a useful focus for screening for patients at risk of distress.


Assuntos
Sintomas Afetivos/psicologia , Regulação Emocional , Neoplasias/psicologia , Resiliência Psicológica , Adaptação Psicológica , Adulto , Ansiedade/psicologia , Estudos Transversais , Depressão/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoio Social
13.
Nat Metab ; 1(7): 688-703, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-32694641

RESUMO

Non-coding RNAs are emerging as novel regulators in adipocyte differentiation and function. Circular RNAs (circRNAs) are a new class of non-coding transcripts generated across all eukaryotic tissues, but their function in adipose biology remains unknown. Here we perform deep sequencing of visceral and subcutaneous fat to discover thousands of adipose circRNAs, many of which are species conserved, tissue specific and dynamically regulated during adipogenesis and obesity. We identify circTshz2-1 and circArhgap5-2 as indispensable regulators of adipogenesis in vitro. To characterize the function of circRNAs in vivo, we deliver adenoviral shRNA targeting circArhgap5-2 into mouse inguinal tissue and show that the expression of this circRNA is essential in maintaining the global adipocyte transcriptional programme involved in lipid biosynthesis and metabolism. We also demonstrate that the pro-adipogenic function of circArhgap5-2 is conserved in human adipocytes. Our results provide important evidence that circRNAs serve as important regulators in adipocyte differentiation and metabolism.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Obesidade/metabolismo , RNA Circular/fisiologia , Diferenciação Celular/genética , Humanos , Análise de Sequência de RNA
14.
J Mol Cell Cardiol ; 120: 53-63, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29792884

RESUMO

BACKGROUND: Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes. METHODS AND RESULTS: Young male Wistar rats were subjected to PO by transverse aortic constriction (TAC) or to sham surgery. Rats from both groups received solvent or 12.5 mg/kg body weight of the non-nucleosidic DNMT inhibitor RG108, initiated on the day of the intervention. After 4 weeks, we analysed cardiac function by MRI, fibrosis with Sirius Red staining, gene expression by RNA sequencing and qPCR, and DNA methylation by reduced representation bisulphite sequencing (RRBS). RG108 attenuated the ~70% increase in heart weight/body weight ratio of TAC over sham to 47% over sham, partially rescued reduced contractility, diminished the fibrotic response and the downregulation of a set of genes including Atp2a2 (SERCA2a) and Adrb1 (beta1-adrenoceptor). RG108 was associated with significantly lower global DNA methylation in cardiomyocytes by ~2%. The differentially methylated pathways were "cardiac hypertrophy", "cell death" and "xenobiotic metabolism signalling". Among these, "cardiac hypertrophy" was associated with significant methylation differences in the group comparison sham vs. TAC, but not significant between sham+RG108 and TAC+RG108 treatment, suggesting that RG108 partially prevented differential methylation. However, when comparing TAC and TAC+RG108, the pathway cardiac hypertrophy was not significantly differentially methylated. CONCLUSIONS: DNMT inhibitor treatment is associated with attenuation of cardiac hypertrophy and moderate changes in cardiomyocyte DNA methylation. The potential mechanistic link between these two effects and the role of non-myocytes need further clarification.


Assuntos
Cardiomegalia/genética , Cardiomegalia/fisiopatologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Ftalimidas/farmacologia , Triptofano/análogos & derivados , Análise de Variância , Animais , Ilhas de CpG/genética , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Imageamento por Ressonância Magnética , Masculino , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Análise de Sequência de RNA , Artérias Torácicas/cirurgia , Triptofano/farmacologia , Função Ventricular
15.
J Plant Physiol ; 224-225: 86-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29609123

RESUMO

Legume species differ in whether or not the 7S globulins stored in seeds undergo proteolytic processing during seed development, while preserving the bicupin structure and trimeric assembly necessary for accumulation and packing into protein storage vacuoles. Two such cleavage sites have been documented for the vicilins in pea cotyledons: one in the linker region between the two cupin domains, and another in an exposed loop in the C-terminal cupin. In this report, we explain the occurrence of vicilin cleavage in developing pea by showing that the storage vacuoles are already acidified before germination, in contrast to soybean and peanut where acidification occurs only after germination. We also show that the two cleavage reactions are catalyzed by two different proteases. The vicilin cleavage at the linker region was inhibited by AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride), indicative of a serine protease. The cleavage in the C-terminal cupin domain was sensitive to the sulfhydryl-reactive reagents p-chloromercuriphenylsulfonate and iodoacetate, but not to E-64 (N-[N-(L-3-transcarboxyirane-2-carbonyl)-l-leucyl]-agmatine), characteristic of the legumain class of cysteine proteases. During seed development, we found the predominant vicilin cleavage in this pea cultivar (Knight) to be at the site in the second cupin domain; but after germination, both sites were cleaved at about the same rate.


Assuntos
Peptídeo Hidrolases/metabolismo , Pisum sativum/metabolismo , Proteínas de Armazenamento de Sementes/química , Germinação , Concentração de Íons de Hidrogênio , Pisum sativum/química , Pisum sativum/crescimento & desenvolvimento , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
16.
Sci Rep ; 8(1): 4726, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549333

RESUMO

Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R-/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.


Assuntos
Transplante de Medula Óssea/métodos , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Linfócitos/imunologia , Imunodeficiência Combinada Severa/terapia , Quimeras de Transplante/imunologia , Animais , Quirópteros , Rejeição de Enxerto/prevenção & controle , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Imunodeficiência Combinada Severa/imunologia
17.
Sci Rep ; 7(1): 16642, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192160

RESUMO

Mouse models have contributed to the bulk of knowledge on Systemic Lupus Erythematosus (SLE). Nevertheless, substantial differences exist between human and mouse immune system. We aimed to establish and characterise a SLE model mediated by human immune system. Injection of pristane into immunodeficient mice reconstituted with human immune system (humanised mice) recapitulated key SLE features, including: production of human anti-nuclear autoantibodies, lupus nephritis, and pulmonary serositis. There was a reduction in the number of human lymphocytes in peripheral blood, resembling lymphopenia in SLE patients. Concurrently, B cells and T cells were systemically hyperactivated, with a relative expansion of CD27+ and CD27-IgD- memory B cells, increased number of plasmablasts/plasma cells, and accumulation of effector memory T cells. There was also an increased production of human pro-inflammatory cytokines, including: IFN-γ, IL-8, IL-18, MCP-1, and IL-6, suggesting their role in SLE pathogenesis. Increased expression of type I IFN signature genes was also found in human hepatocytes. Altogether, we showed an SLE model that was mediated by human immune system, and which recapitulated key clinical and immunological SLE features. The advancements of humanised mice SLE model would provide an in vivo platform to facilitate translational studies and pre-clinical evaluations of human-specific mechanisms and immunotherapies.


Assuntos
Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/etiologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biomarcadores , Biópsia , Citocinas/metabolismo , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hepatócitos/metabolismo , Humanos , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Imuno-Histoquímica , Imunofenotipagem , Mediadores da Inflamação , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/etiologia , Nefrite Lúpica/patologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Transgênicos
18.
J Hematol Oncol ; 10(1): 162, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985760

RESUMO

BACKGROUND: Xenotransplantation of patient-derived AML (acute myeloid leukemia) cells in NOD-scid Il2rγ null (NSG) mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct. METHODS: Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically. RESULTS: Introduction of primary cells from AML patients resulted in high levels of engraftment in peripheral blood, spleen, and bone marrow (BM) of recipient mice. The phenotype of engrafted AML cells remained unaltered during serial transplantation. The mice developed features that are consistent with human AML including spleen enlargement and infiltration of AML cells into multiple organs. Importantly, we demonstrated that although leukemic stem cell activity is enriched and mediated by CD34+CD117+ subpopulation, CD34+CD117- subpopulation can acquire CD34+CD117+ phenotype through de-differentiation. Lastly, we evaluated the therapeutic potential of Sorafenib and Regorafenib in this AML model and found that periphery and spleen AML cells are sensitive to these treatments, whereas BM provides a protective environment to AML. CONCLUSIONS: Collectively, our improved model is robust, easy-to-construct, and reliable for pre-clinical AML studies.


Assuntos
Leucemia Mieloide Aguda/genética , Transplante Heterólogo/métodos , Animais , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
19.
Oncol Lett ; 13(3): 1625-1630, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28454300

RESUMO

Although bulk high-throughput genomic profiling studies have led to a significant increase in the understanding of cancer biology, there is increasing awareness that bulk profiling approaches do not completely elucidate tumor heterogeneity. Single-cell genomic profiling enables the distinction of tumor heterogeneity, and may improve clinical diagnosis through the identification and characterization of putative subclonal populations. In the present study, the challenges associated with a single-cell genomics profiling workflow for clinical diagnostics were investigated. Single-cell RNA-sequencing (RNA-seq) was performed on 20 cells from an acute myeloid leukemia bone marrow sample. Putative blasts were identified based on their gene expression profiles and principal component analysis was performed to identify outlier cells. Variant calling was performed on the single-cell RNA-seq data. The present pilot study demonstrates a proof of concept for clinical single-cell genomic profiling. The recognized limitations include significant stochastic RNA loss and the relatively low throughput of the current proposed platform. Although the results of the present study are promising, further technological advances and protocol optimization are necessary for single-cell genomic profiling to be clinically viable.

20.
Plant Physiol Biochem ; 104: 242-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27043965

RESUMO

During soybean (Glycine max (L.) Merrill) seed development, protease C1, the proteolytic enzyme that initiates breakdown of the storage globulins ß-conglycinin and glycinin at acidic pH, is present in the protein storage vacuoles (PSVs), the same subcellular compartments in seed cotyledons where its protein substrates accumulate. Actual proteolysis begins to be evident 24 h after seed imbibition, when the PSVs become acidic, as indicated by acridine orange accumulation visualized by confocal microscopy. Imidodiphosphate (IDP), a non-hydrolyzable substrate analog of proton-translocating pyrophosphatases, strongly inhibited acidification of the PSVs in the cotyledons. Consistent with this finding, IDP treatment inhibited mobilization of ß-conglycinin and glycinin, the inhibition being greater at 3 days compared to 6 days after seed imbibition. The embryonic axis does not appear to play a role in the initial PSV acidification in the cotyledon, as axis detachment did not prevent acridine orange accumulation three days after imbibition. SDS-PAGE and immunoblot analyses of cotyledon protein extracts were consistent with limited digestion of the 7S and 11S globulins by protease C1 starting at the same time and proceeding at the same rate in detached cotyledons compared to cotyledons of intact seedlings. Embryonic axis removal did slow down further breakdown of the storage globulins by reactions known to be catalyzed by protease C2, a cysteine protease that normally appears later in seedling growth to continue the storage protein breakdown initiated by protease C1.


Assuntos
Ácidos/metabolismo , Germinação , Glycine max/metabolismo , Membranas Intracelulares/metabolismo , Bombas de Próton/metabolismo , Vacúolos/metabolismo , Antígenos de Plantas/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Inibidores Enzimáticos/farmacologia , Germinação/efeitos dos fármacos , Globulinas/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Fosfatos/farmacologia , Proteínas de Plantas/metabolismo , Proteólise/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Soja/metabolismo , Glycine max/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA