Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Mol Med ; 27(16): 2412-2423, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37438979

RESUMO

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. Cisplatin is commonly used in the treatment of many malignant tumours including NSCLC. The innate drug sensitivity greatly affects the clinical efficacy of cisplatin-based chemotherapy. As a plasma membrane adhesion molecule, amphoterin-induced gene and ORF-2 (AMIGO2) initially identified as a neurite outgrowth factor has been recently found to play a crucial role in cancer occurrence and progression. However, it is still unclear whether AMIGO2 is involved in innate cisplatin sensitivity. In the present study, we provided the in vitro and in vivo evidences indicating that the alteration of AMIGO2 expression triggered changes of innate cisplatin sensitivity as well as cisplatin-induced pyroptosis in NSCLC. Further results revealed that AMIGO2 might inhibit cisplatin-induced activation of (caspase-8 and caspase-9)/caspase-3 via stimulating PDK1/Akt (T308) signalling axis, resulting in suppression of GSDME cleavage and the subsequent cell pyroptosis, thereby decreasing the sensitivity of NSCLC cells to cisplatin treatment. The results provided a new insight that AMIGO2 regulated the innate cisplatin sensitivity of NSCLC through GSDME-mediated pyroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caspase 3/metabolismo , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso/genética , Piroptose , Transdução de Sinais , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
2.
EBioMedicine ; 92: 104587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149929

RESUMO

BACKGROUND: Metastasis is one of the most lethal hallmarks of esophageal squamous cell carcinoma (ESCC), yet the mechanisms remain unclear due to a lack of reliable experimental models and systematic identification of key drivers. There is urgent need to develop useful therapies for this lethal disease. METHODS: A genome-wide CRISPR/Cas9 screening, in combination with gene profiling of highly invasive and metastatic ESCC sublines, as well as PDX models, was performed to identify key regulators of cancer metastasis. The Gain- and loss-of-function experiments were taken to examine gene function. Protein interactome, RNA-seq, and whole genome methylation sequencing were used to investigate gene regulation and molecular mechanisms. Clinical significance was analyzed in tumor tissue microarray and TCGA databases. Homology modeling, modified ELISA, surface plasmon resonance and functional assays were performed to identify lead compound which targets MEST to suppress cancer metastasis. FINDINGS: High MEST expression was associated with poor patient survival and promoted cancer invasion and metastasis in ESCC. Mechanistically, MEST activates SRCIN1/RASAL1-ERK-snail signaling by interacting with PURA. miR-449a was identified as a direct regulator of MEST, and hypermethylation of its promoter led to MEST upregulation, whereas systemically delivered miR-449a mimic could suppress tumor metastasis without overt toxicity. Furthermore, molecular docking and computational screening in a small-molecule library of 1,500,000 compounds and functional assays showed that G699-0288 targets the MEST-PURA interaction and significantly inhibits cancer metastasis. INTERPRETATION: We identified the MEST-PURA-SRCIN1/RASAL1-ERK-snail signaling cascade as an important mechanism underlying cancer metastasis. Blockade of MEST-PURA interaction has therapeutic potential in management of cancer metastasis. FUNDING: This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900, 2017YFA0505100); National Natural Science Foundation of China (31961160727, 82073196, 81973339, 81803551); NSFC/RGC Joint Research Scheme (N_HKU727/19); Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035); Key Laboratory of Guangdong Higher Education Institutes of China (2021KSYS009).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Simulação de Acoplamento Molecular , Sistemas CRISPR-Cas , Detecção Precoce de Câncer , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
3.
Signal Transduct Target Ther ; 8(1): 14, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617552

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Identification of the underlying mechanism of HCC progression and exploration of new therapeutic drugs are urgently needed. Here, a compound library consisting of 419 FDA-approved drugs was taken to screen potential anticancer drugs. A series of functional assays showed that desloratadine, an antiallergic drug, can repress proliferation in HCC cell lines, cell-derived xenograft (CDX), patient-derived organoid (PDO) and patient-derived xenograft (PDX) models. N-myristoyl transferase 1 (NMT1) was identified as a target protein of desloratadine by drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) assays. Upregulation of NMT1 expression enhanced but NMT1 knockdown suppressed tumor growth in vitro and in vivo. Metabolic labeling and mass spectrometry analyses revealed that Visinin-like protein 3 (VILIP3) was a new substrate of NMT1 in protein N-myristoylation modification, and high NMT1 or VILIP3 expression was associated with advanced stages and poor survival in HCC. Mechanistically, desloratadine binds to Asn-246 in NMT1 and inhibits its enzymatic activity, disrupting the NMT1-mediated myristoylation of the VILIP3 protein and subsequent NFκB/Bcl-2 signaling. Conclusively, this study demonstrates that desloratadine may be a novel anticancer drug and that NMT1-mediated myristoylation contributes to HCC progression and is a potential biomarker and therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional
4.
Eur J Pharmacol ; 931: 175186, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977595

RESUMO

Tumor chemoresistance is often a major cause for the failure of chemotherapy. The resistance of hepatocellular carcinoma (HCC) cells to sorafenib significantly limits its therapeutic effect in HCC patients. For the first time, we found that FXYD domain-containing ion transport regulator 5 (FXYD5) is highly expressed in sorafenib-resistant HCC cells. In addition, the protein expression level of FXYD5 was markedly higher in HCC tissues than in paracancerous tissues. Remarkably, downregulation of FXYD5 expression in Huh7/sora cells reversed their resistance to sorafenib. Moreover, overexpression of FXYD5 reduced the sensitivity of HCC cells to sorafenib, while the downregulation of its expression in HCC cells had the opposite effect. We also found abnormal activation of the Akt/mTOR signaling pathway in Huh7/sora cells. Furthermore, MK2206, an Akt inhibitor, was found to significantly increase the sensitivity of HCC cells to sorafenib. More importantly, the expression level of p-Akt was positively correlated with the expression of FXYD5 in HCC tissues. Therefore, mechanistically, FXYD5 enhances the resistance of HCC cells to sorafenib by activating the Akt/mTOR signaling pathway. In conclusion, this study showed that the activation of the FXYD5/Akt/mTOR signaling axis plays key role in the resistance of HCC cells to sorafenib, and FXYD5 may represent a new potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Canais Iônicos/metabolismo , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR/metabolismo
5.
MedComm (2020) ; 2(3): 453-466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766155

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3-methyladenine (3-MA) increases lomerizine 2HCl-induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.

6.
Oncotarget ; 7(18): 26709-23, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050374

RESUMO

Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Galectina 1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA