Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
medRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38633811

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a well-described condition in which ~80% of cases have a genetic explanation, while the genetic basis of sporadic cystic kidney disease in adults remains unclear in ~30% of cases. This study aimed to identify novel genes associated with polycystic kidney disease (PKD) in patients with sporadic cystic kidney disease in which a clear genetic change was not identified in established genes. A next-generation sequencing panel analyzed known genes related to renal cysts in 118 sporadic cases, followed by whole-genome sequencing on 47 unrelated individuals without identified candidate variants. Three male patients were found to have rare missense variants in the X-linked gene Cilia And Flagella Associated Protein 47 (CFAP47). CFAP47 was expressed in primary cilia of human renal tubules, and knockout mice exhibited vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. This discovery of CFAP47 as a newly identified gene associated with PKD, displaying X-linked inheritance, emphasizes the need for further cases to understand the role of CFAP47 in PKD.

2.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258527

RESUMO

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Genes Ligados ao Cromossomo X , Células HEK293 , Infertilidade Masculina/genética , Oligospermia/genética , Sêmen
3.
HGG Adv ; 5(1): 100256, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37981762

RESUMO

In this study, we report on mosaic variegated aneuploidy (MVA) syndrome with tetraploidy and predisposition to infertility in a family. Sequencing analysis identified that the CEP192 biallelic variants (c.1912C>T, p.His638Tyr and c.5750A>G, p.Asn1917Ser) segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size, while CEP192 monoallelic variants segregated with infertility and/or reduced testicular size in the family. In 1,264 unrelated patients, variant screening for CEP192 identified a same variant (c.5750A>G, p.Asn1917Ser) and other variants significantly associated with infertility. Two lines of Cep192 mice model that are equivalent to human variants were generated. Embryos with Cep192 biallelic variants arrested at E7 because of cell apoptosis mediated by MVA/tetraploidy cell acumination. Mice with heterozygous variants replicated the predisposition to male infertility. Mouse primary embryonic fibroblasts with Cep192 biallelic variants cultured in vitro showed abnormal morphology, mitotic arresting, and disruption of spindle formation. In patient epithelial cells with biallelic variants cultured in vitro, the number of cells arrested during the prophase increased because of the failure of spindle formation. Accordingly, we present mutant CEP192, which is a link for the MVA syndrome with tetraploidy and the predisposition to male infertility.


Assuntos
Transtornos Cromossômicos , Infertilidade Masculina , Humanos , Masculino , Camundongos , Animais , Tetraploidia , Aneuploidia , Suscetibilidade a Doenças , Infertilidade Masculina/genética , Proteínas Cromossômicas não Histona/genética , Mosaicismo
4.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796361

RESUMO

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Assuntos
Astenozoospermia , Tupaia , Animais , Masculino , Macaca fascicularis , Primatas , Sêmen , Motilidade dos Espermatozoides , Tupaiidae
6.
Asian J Androl ; 25(1): 58-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35665694

RESUMO

Congenital bilateral absence of the vas deferens (CBAVD) is observed in 1%-2% of males presenting with infertility and is clearly associated with cystic fibrosis transmembrane conductance regulator (CFTR) mutations. CFTR is one of the most well-known genes related to male fertility. The frequency of CFTR mutations or impaired CFTR expression is increased in men with nonobstructive azoospermia (NOA). CFTR mutations are highly polymorphic and have established ethnic specificity. Compared with F508Del in Caucasians, the p.G970D mutation is reported to be the most frequent CFTR mutation in Chinese patients with cystic fibrosis. However, whether p.G970D participates in male infertility remains unknown. Herein, a loss-of-function CFTR p.G970D missense mutation was identified in a patient with CBAVD and NOA. Subsequent retrospective analysis of 122 Chinese patients with CBAVD showed that the mutation is a common pathogenic mutation (4.1%, 5/122), excluding polymorphic sites. Furthermore, we generated model cell lines derived from mouse testes harboring the homozygous Cftr p.G965D mutation equivalent to the CFTR variant in patients. The Cftr p.G965D mutation may be lethal in spermatogonial stem cells and spermatogonia and affect the proliferation of spermatocytes and Sertoli cells. In spermatocyte GC-2(spd)ts (GC2) Cftr p.G965D cells, RNA splicing variants were detected and CFTR expression decreased, which may contribute to the phenotypes associated with impaired spermatogenesis. Thus, this study indicated that the CFTR p.G970D missense mutation might be a pathogenic mutation for CBAVD in Chinese males and associated with impaired spermatogenesis by affecting the proliferation of germ cells.


Assuntos
Infertilidade Masculina , Mutação de Sentido Incorreto , Humanos , Animais , Camundongos , Masculino , Estudos Retrospectivos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Infertilidade Masculina/genética , Mutação , Ducto Deferente/anormalidades , Espermatogênese/genética
7.
J Transl Med ; 20(1): 396, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058949

RESUMO

BACKGROUND: Previous studies suggested that non-invasive preimplantation genetic testing (niPGT) for intracytoplasmic sperm injection (ICSI) blastocysts can be used to identify chromosomal ploidy and chromosomal abnormalities. Here, we report the feasibility and performance of niPGT for conventional in vitro fertilization (IVF) blastocysts. METHODS: This was a prospective observational study. In the preclinical stage, whole genome amplification and NGS were performed using the sperm spent culture medium (SCM). Then, trophectoderm (TE) biopsies and corresponding SCM derived from 27 conventional IVF monopronuclear embryos were collected. In the clinical stage, samples from 25 conventional IVF cycles and 37 ICSI cycles from April 2020-August 2021 were collected for performance evaluation. RESULTS: Preclinically, we confirmed failed sperm DNA amplification under the current amplification system. Subsequent niPGT from the 27 monopronuclear blastocysts showed 69.2% concordance with PGT results of corresponding TE biopsies. In the clinical stage, no paternal contamination was observed in any of the 161 SCM samples from conventional IVF. While maternal contamination was observed in 29.8% (48/161) SCM samples, only 2.5% (4/161) samples had a contamination ratio ≥ 50%. Compared with that of TE biopsy, the performances of NiPGT from 161 conventional IVF embryos and 122 ICSI embryos were not significantly different (P > 0.05), with ploidy concordance rates of 75% and 74.6% for IVF and ICSI methods, respectively. Finally, evaluation of the euploid probability of embryos with different types of niPGT results showed prediction probabilities of 82.8%, 77.8%, 62.5%, 50.0%, 40.9% and 18.4% for euploidy, sex-chromosome mosaics only, low-level mosaics, multiple abnormal chromosomes, high-level mosaics and aneuploidy, respectively. CONCLUSIONS: Our research results preliminarily confirm that the niPGT approach using SCM from conventional IVF has comparable performance with ICSI and might broadening the application scope of niPGT.


Assuntos
Diagnóstico Pré-Implantação , Blastocisto/patologia , Aberrações Cromossômicas , Meios de Cultura , Feminino , Fertilização in vitro , Testes Genéticos/métodos , Humanos , Masculino , Gravidez , Diagnóstico Pré-Implantação/métodos , Sêmen
8.
Hum Reprod Update ; 28(6): 763-797, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613017

RESUMO

BACKGROUND: Meiosis is an essential stage in the life cycle of sexually reproducing species, underlying formation of haploid gametes and serving as the basis of genetic diversity. A central mechanism of meiosis is recombination between homologous chromosomes, during which programmed DNA double-strand breaks (DSBs) are sequentially repaired to form the crossovers essential for faithful chromosomal segregation. Aberrant meiotic recombination often leads to gametogenic failure or produces aneuploid gametes resulting in subfertility or infertility, miscarriage or birth defects. OBJECTIVE AND RATIONALE: The goal of this review was to characterize the molecular mechanisms of meiotic recombination and related human infertility disorders, particularly male infertility caused by non-obstructive azoospermia (NOA). SEARCH METHODS: Our search included PubMed database articles, focusing mainly on English-language publications dated between January 2016 and February 2022. The search term 'meiosis' was combined with the following keywords: meiotic initiation, chromosome pairing, homologous recombination, chromosome axis, DSB, DSB repair, crossover, meiotic sex chromosome inactivation, meiotic checkpoints, meiotic arrest, NOA, premature ovarian insufficiency (POI) or premature ovarian failure, treatment and cancer. In addition, references within these articles were used to identify additional studies. OUTCOMES: The preliminary search generated ∼3500 records. The majority of articles were identified as meeting abstracts or duplicates, contained non-English text or provided insufficient data and were therefore eliminated. A total of 271 articles associated with meiotic recombination were included in the final analysis. This review provides an overview of molecules and mechanisms involved in meiotic recombination processes, specifically meiosis-specific chromosome structures, DSB formation, homology search, formation of recombination intermediates and crossover formation. The cumulative results suggest that meiosis is regulated sequentially by a series of meiotic recombination genes and proteins. Importantly, mutations in these genes often affect meiotic progression, activating meiotic checkpoints, causing germ cell arrest and leading to subfertility or infertility. At least 26 meiotic recombination-related genes have been reported to be mutated in NOA in men, and 10 of these genes are mutated in POI in women. This suggests that variants of meiotic recombination-related genes can cause human subfertility or infertility, especially NOA. WIDER IMPLICATIONS: Understanding the processes of homologous chromosome pairing, recombination and timely resolution of homologous chromosomes may provide guidance for the analysis of potential monogenetic causes of human subfertility or infertility and the development of personalized treatments. In clinical practice, we can develop a meiotic recombination-related gene panel to screen for gene mutations in individuals with subfertility or infertility. Testicular sperm extraction should not be recommended when an NOA-affected individual carries definite disease-causing mutations of a meiotic gene, so as to avoid the unnecessary invasive diagnosis. Risk of ovarian dysfunction should be evaluated if a woman carries meiotic recombination-related gene mutations. It may be possible to improve or restore fertility through manipulation of meiotic recombination-related genes in the future.


Assuntos
Azoospermia , Humanos , Masculino , Feminino , Azoospermia/genética , Sêmen , Recombinação Homóloga , Reprodução
9.
Mol Hum Reprod ; 28(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485979

RESUMO

Meiosis is pivotal to gametogenesis and fertility. Meiotic recombination is a mandatory process that ensures faithful chromosome segregation and generates genetic diversity in gametes. Non-obstructive azoospermia (NOA) caused by meiotic arrest is a common cause of male infertility and has many genetic origins, including chromosome abnormalities, Y chromosome microdeletion and monogenic mutations. However, the genetic causes of the majority of NOA cases remain to be elucidated. Here, we report our findings of three Shortage in chiasmata 1 (SHOC1) bi-allelic variants in three NOA patients, of which two are homozygous for the same loss-of-function variant (c.231_232del: p.L78Sfs*9), and one is heterozygous for two different missense variants (c.1978G>A: p.A660T; c.4274G>A: p.R1425H). Testicular biopsy of one patient revealed impairment of spermatocyte maturation. Both germ-cell-specific and general Shoc1-knockout mice exhibited similar male infertility phenotypes. Subsequent analysis revealed comprehensive defects in homologous pairing and synapsis along with abnormal expression of DMC1, RAD51 and RPA2 in Shoc1-defective spermatocyte spreads. These findings imply that SHOC1 may have a presynaptic function during meiotic recombination apart from its previously identified role in crossover formation. Overall, our results provide strong evidence for the clinical relevance of SHOC1 mutations in patients with NOA and contribute to a deeper mechanistic understanding of the role of SHOC1 during meiotic recombination.


Assuntos
Azoospermia , Proteínas de Ligação a DNA , Infertilidade Masculina , Meiose , Animais , Azoospermia/genética , Azoospermia/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Camundongos , Camundongos Knockout
10.
J Med Genet ; 59(10): 1010-1016, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35121647

RESUMO

BACKGROUND: Numerous variants of uncertain significance (VUSs) have been identified by whole exome sequencing in clinical practice. However, VUSs are not currently considered medically actionable. OBJECTIVE: To assess the splicing patterns of 49 VUSs in 48 families identified clinically to improve genetic counselling and family planning. METHODS: Forty-nine participants with 49 VUSs were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Bioinformatic analysis was performed to preliminarily predict the splicing effects of these VUSs. RT-PCR and minigene analysis were used to assess the splicing patterns of the VUSs. According to the results obtained, couples opted for different methods of reproductive interventions to conceive a child, including prenatal diagnosis and preimplantation genetic testing (PGT). RESULTS: Eleven variants were found to alter pre-mRNA splicing and one variant caused nonsense-mediated mRNA decay, which resulted in the reclassification of these VUSs as likely pathogenic. One couple chose to undergo in vitro fertilisation with PGT treatment; a healthy embryo was transferred and the pregnancy is ongoing. Three couples opted for natural pregnancy with prenatal diagnosis. One couple terminated the pregnancy because the fetus was affected by short-rib thoracic dysplasia and harboured the related variant. The infants of the other two couples were born and were healthy at their last recorded follow-up. CONCLUSION: RNA splicing analysis is an important method to assess the impact of sequence variants on splicing in clinical practice and can contribute to the reclassification of a significant proportion of VUSs. RNA splicing analysis should be considered for genetic disease diagnostics.


Assuntos
Precursores de RNA , Splicing de RNA , Feminino , Aconselhamento Genético , Testes Genéticos/métodos , Humanos , Gravidez , Diagnóstico Pré-Natal , Splicing de RNA/genética
11.
Asian J Androl ; 24(4): 359-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34755699

RESUMO

Spermiogenesis is a complex and tightly regulated process, consisting of acrosomal biogenesis, condensation of chromatin, flagellar assembly, and disposal of extra cytoplasm. Previous studies have reported that sperm flagellar 2 (SPEF2) deficiency causes severe asthenoteratozoospermia owing to spermiogenesis failure, but the underlying molecular mechanism in humans remains unclear. Here, we performed proteomic analysis on spermatozoa from three SPEF2 mutant patients to study the functional role of SPEF2 during sperm tail development. A total of 1262 differentially expressed proteins were detected, including 486 upregulated and 776 downregulated. The constructed heat map of the differentially expressed proteins showed similar trends. Among these, the expression of proteins related to flagellar assembly, including SPEF2, sperm associated antigen 6 (SPAG6), dynein light chain tctex-type 1 (DYNLT1), radial spoke head component 1 (RSPH1), translocase of outer mitochondrial membrane 20 (TOM20), EF-hand domain containing 1 (EFHC1), meiosis-specific nuclear structural 1 (MNS1) and intraflagellar transport 20 (IFT20), was verified by western blot. Functional clustering analysis indicated that these differentially expressed proteins were specifically enriched for terms such as spermatid development and flagellar assembly. Furthermore, we showed that SPEF2 interacts with radial spoke head component 9 (RSPH9) and IFT20 in vitro, which are well-studied components of radial spokes or intra-flagellar transport and are essential for flagellar assembly. These results provide a rich resource for further investigation into the molecular mechanism underlying the role that SPEF2 plays in sperm tail development and could provide a theoretical basis for gene therapy in SPEF2 mutant patients in the future.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteômica , Sêmen , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dineínas/genética , Humanos , Masculino , Proteínas/genética , Sêmen/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo
12.
Am J Hum Genet ; 109(1): 157-171, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932939

RESUMO

Asthenoteratozoospermia, defined as reduced sperm motility and abnormal sperm morphology, is a disorder with considerable genetic heterogeneity. Although previous studies have identified several asthenoteratozoospermia-associated genes, the etiology remains unknown for the majority of affected men. Here, we performed whole-exome sequencing on 497 unrelated men with asthenoteratozoospermia and identified DNHD1 bi-allelic variants from eight families (1.6%). All detected variants were predicted to be deleterious via multiple bioinformatics tools. Hematoxylin and eosin (H&E) staining revealed that individuals with bi-allelic DNHD1 variants presented striking abnormalities of the flagella; transmission electron microscopy (TEM) further showed flagellar axoneme defects, including central pair microtubule (CP) deficiency and mitochondrial sheath (MS) malformations. In sperm from fertile men, DNHD1 was localized to the entire flagella of the normal sperm; however, it was nearly absent in the flagella of men with bi-allelic DNHD1 variants. Moreover, abundance of the CP markers SPAG6 and SPEF2 was significantly reduced in spermatozoa from men harboring bi-allelic DNHD1 variants. In addition, Dnhd1 knockout male mice (Dnhd1‒/‒) exhibited asthenoteratozoospermia and infertility, a finding consistent with the sperm phenotypes present in human subjects with DNHD1 variants. The female partners of four out of seven men who underwent intracytoplasmic sperm injection therapy subsequently became pregnant. In conclusion, our study showed that bi-allelic DNHD1 variants cause asthenoteratozoospermia, a finding that provides crucial insights into the biological underpinnings of this disorder and should assist with counseling of affected individuals.


Assuntos
Alelos , Astenozoospermia/genética , Axonema/genética , Dineínas/genética , Flagelos/genética , Predisposição Genética para Doença , Mutação , Animais , Astenozoospermia/diagnóstico , Axonema/patologia , Biologia Computacional/métodos , Análise Mutacional de DNA , Modelos Animais de Doenças , Flagelos/patologia , Frequência do Gene , Estudos de Associação Genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Linhagem , Fenótipo , Análise do Sêmen , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Sequenciamento do Exoma
13.
Am J Hum Genet ; 108(8): 1466-1477, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34237282

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF)-induced asthenoteratozoospermia is a common cause of male infertility. Previous studies have identified several MMAF-associated genes, highlighting the condition's genetic heterogeneity. To further define the genetic causes underlying MMAF, we performed whole-exome sequencing in a cohort of 643 Chinese MMAF-affected men. Bi-allelic DNAH10 variants were identified in five individuals with MMAF from four unrelated families. These variants were either rare or absent in public population genome databases and were predicted to be deleterious by multiple bioinformatics tools. Morphological and ultrastructural analyses of the spermatozoa obtained from men harboring bi-allelic DNAH10 variants revealed striking flagellar defects with the absence of inner dynein arms (IDAs). DNAH10 encodes an axonemal IDA heavy chain component that is predominantly expressed in the testes. Immunostaining analysis indicated that DNAH10 localized to the entire sperm flagellum of control spermatozoa. In contrast, spermatozoa from the men harboring bi-allelic DNAH10 variants exhibited an absence or markedly reduced staining intensity of DNAH10 and other IDA components, including DNAH2 and DNAH6. Furthermore, the phenotypes were recapitulated in mouse models lacking Dnah10 or expressing a disease-associated variant, confirming the involvement of DNAH10 in human MMAF. Altogether, our findings in humans and mice demonstrate that DNAH10 is essential for sperm flagellar assembly and that deleterious bi-allelic DNAH10 variants can cause male infertility with MMAF. These findings will provide guidance for genetic counseling and insights into the diagnosis of MMAF-associated asthenoteratozoospermia.


Assuntos
Astenozoospermia/complicações , Modelos Animais de Doenças , Dineínas/genética , Infertilidade Masculina/patologia , Mutação , Fenótipo , Espermatozoides/patologia , Alelos , Animais , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/metabolismo , Sequenciamento do Exoma
14.
Reprod Biomed Online ; 43(1): 73-80, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33931368

RESUMO

RESEARCH QUESTION: What is the genetic cause of multiple congenital disabilities in a girl with a maternal balanced X-autosome translocation [t(X-A)]? Is preimplantation genetic testing (PGT), to distinguish non-carrier from euploid/balanced embryos and prioritize transfer, an effective and applicable strategy for couples with t(X-A)? DESIGN: Karyotype analysis, whole-exome sequencing and X inactivation analysis were performed for a girl with congenital cardiac anomalies, language impairment and mild neurodevelopmental delay. PGT based on next-generation sequencing after microdissecting junction region (MicroSeq) to distinguish non-carrier and carrier embryos was used in three couples with a female t(X-A) carrier (cases 1-3). RESULTS: The girl carried a maternal balanced translocation 46,X,t(X;1)(q28;p31.1). Whole-exome sequencing revealed no monogenic mutation related to her phenotype, but she carried a rare skewed inactivation of the translocated X chromosome that spread to the adjacent interstitial 1p segment, contrary to her mother. All translocation breakpoints in cases 1-3 were successfully identified and each couple underwent one PGT cycle. Thirty oocytes were retrieved, and 13 blastocysts were eligible for biopsy, of which six embryos had a balanced translocation and only four were non-carriers. Three cryopreserved embryo transfers with non-carrier status embryos resulted in the birth of two healthy children (one girl and one boy), who were subsequently confirmed to have normal karyotypes. CONCLUSIONS: This study reported a girl with multiple congenital disabilities associated with a maternal balanced t(X-A) and verified that the distinction between non-carrier and carrier embryos is an effective and applicable strategy to avoid transferring genetic and reproductive risks to the offspring of t(X-A) carriers.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos X , Diagnóstico Pré-Implantação , Translocação Genética , Feminino , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Transtornos do Neurodesenvolvimento/genética , Reinfecção/genética
15.
J Assist Reprod Genet ; 38(3): 735-742, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432423

RESUMO

PURPOSE: The purpose of this study is to summarize the clinical outcomes of apparently balanced chromosome rearrangement (ABCR) carriers in preimplantation genetic testing (PGT) cycles by next-generation sequencing following microdissecting junction region (MicroSeq) to distinguish non-carrier embryos from balanced carriers. METHODS: A retrospective study of 762 ABCR carrier couples who requested PGT for structural rearrangements combined with MicroSeq at the Reproductive and Genetic Hospital of CITIC-Xiangya was conducted between October 2014 and October 2019. RESULTS: Trophectoderm biopsy was performed in 4122 blastocysts derived from 917 PGT-SR cycles and 3781 blastocysts were detected. Among the 3781 blastocysts diagnosed, 1433 (37.9%, 1433/3781) were balanced, of which 739 blastocysts were carriers (51.57%, 739/1433) and 694 blastocysts were normal (48.43%, 694/1433). Approximately 26.39% of cycles had both carrier and normal embryo transfer, and the average number of biopsied blastocysts was 6.7. In the cumulative 223 biopsied cycles with normal embryo transfer, all couples chose to transfer the normal embryos. In the 225 cycles with only carrier embryos, the couples chose to transfer the carrier embryos in 169/225 (75.11%) cycles. A total of 732 frozen embryo transfer cycles were performed, resulting in 502 clinical pregnancies. Cumulatively, 326 babies were born; all of these babies were healthy and free of any developmental issues. CONCLUSION: Our study provides the first evaluation of the clinical outcomes of a large sample with ABCR carrier couples undergoing the MicroSeq-PGT technique and reveals its powerful ability to distinguish between carrier and non-carrier balanced embryos.


Assuntos
Aberrações Cromossômicas/estatística & dados numéricos , Transtornos Cromossômicos/diagnóstico , Fertilização in vitro/métodos , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Adulto , Transtornos Cromossômicos/genética , Transferência Embrionária , Feminino , Humanos , Masculino , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Estudos Retrospectivos
16.
Asian J Androl ; 22(3): 236-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31210147

RESUMO

The syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities (absent, short, bent, coiled, and irregular flagella). MMAF was proposed in 2014 and has attracted increasing attention; however, it has not been clearly understood. In this review, we elucidate the definition of MMAF from a systematical view, the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia (such as primary mitochondrial sheath defects and primary ciliary dyskinesia), the knowledge regarding its etiological mechanism and related genetic findings, and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic counseling. This review provides the basic knowledge for MMAF and puts forward some suggestions for further investigations.


Assuntos
Astenozoospermia/fisiopatologia , Infertilidade Masculina/fisiopatologia , Cauda do Espermatozoide/patologia , Teratozoospermia/fisiopatologia , Proteínas de Ancoragem à Quinase A/genética , Adenilato Quinase/genética , Animais , Astenozoospermia/genética , Astenozoospermia/patologia , Proteínas do Citoesqueleto/genética , Dineínas/genética , Aconselhamento Genético , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Masculino , Proteínas dos Microtúbulos/genética , Peptídeo Hidrolases/genética , Injeções de Esperma Intracitoplásmicas , Teratozoospermia/genética , Teratozoospermia/patologia
17.
Sci Rep ; 9(1): 15864, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676830

RESUMO

Male infertility due to spermatogenesis defects affects millions of men worldwide. However, the genetic etiology of the vast majority remains unclear. Here we describe three men with primary infertility due to multiple morphological abnormalities of the sperm flagella (MMAF) from two unrelated Han Chinese families. We performed whole-exome sequencing (WES) and Sanger sequencing on the proband of family 1, and found that he carried novel compound heterozygous missense mutations in dynein axonemal heavy chain 6 (DNAH6) that resulted in the substitution of a conserved amino acid residue and co-segregated with the MMAF phenotype in this family. Papanicolaou staining and transmission electron microscopy analysis revealed morphological and ultrastructural abnormalities in the sperm flagella in carriers of these genetic variants. Immunostaining experiments showed that DNAH6 was localized in the sperm tail. This is the first report identifying novel recessive mutations in DNAH6 as a cause of MMAF. These findings expand the spectrum of known MMAF mutations and phenotypes and provide information that can be useful for genetic and reproductive counseling of MMAF patients.


Assuntos
Dineínas/genética , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide/ultraestrutura , Adulto , China , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Sequenciamento do Exoma
18.
Fertil Steril ; 112(1): 82-88, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31056308

RESUMO

OBJECTIVE: To investigate whether blastocyst biopsy in preimplantation genetic testing (PGT) increases the risk of adverse neonatal outcomes. DESIGN: Retrospective cohort study. SETTING: University-affiliated center. PATIENTS: Live births after blastocyst biopsy combined with frozen ET (PGT group) and frozen blastocyst transfer after in vitro fertilization or intracytoplasmic sperm injection (control group). INTERVENTION(S): Blastocyst biopsy. MAIN OUTCOME MEASURE(S): Gestational age (GA), birth weight (BW), and rates of preterm birth (PB), very preterm birth (VPB), extreme preterm birth (EPB), low birth weight (LBW), very low birth weight (VLBW), and macrosomia. RESULT(S): No significant differences were observed in the sex ratio, GA, PB, VPB, EPB, BW, or rates of LBW, VLBW, and macrosomia between the PGT and control groups for either singletons or twins. However, the cesarean section rate of the PGT group was significantly higher than that of the control group for twins (adjusted odds ratio, 2.383 [1.079, 5.259]). Regarding fluorescence in situ hybridization-PGT neonates, neonatal outcomes, including GA, BW, and rates of PB, VPB, LBW, and VLBW, did not differ between the different groups of biopsied cells (≥10 group and <10 group) for either the grade B or grade C trophectoderm score subgroups; however, in the grade B trophectoderm score subgroup, the rate of boy babies in the ≥10 group was significantly higher than that in the <10 group (83.3% vs. 40.9%). The association between the number of biopsied cells and GA/BW was not statistically significant. CONCLUSION(S): Blastocyst biopsy may not add additional risk to neonatal outcomes when compared with a control group.


Assuntos
Blastocisto/patologia , Transferência Embrionária , Fertilização in vitro , Testes Genéticos , Diagnóstico Pré-Implantação/métodos , Adulto , Biópsia/efeitos adversos , Peso ao Nascer , Transferência Embrionária/efeitos adversos , Feminino , Fertilização in vitro/efeitos adversos , Idade Gestacional , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Prematuro , Nascido Vivo , Valor Preditivo dos Testes , Gravidez , Nascimento Prematuro/etiologia , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Injeções de Esperma Intracitoplásmicas , Resultado do Tratamento
19.
J Cancer ; 10(3): 643-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719162

RESUMO

Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide, associated with hereditary genetic features. CRC with a Mendelian genetic predisposition accounts for approximately 5-10% of total CRC cases, mainly caused by a single germline mutation of a CRC susceptibility gene. The main subtypes of hereditary CRC are hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). With the rapid development of genetic testing methods, especially next-generation sequencing technology, multiple genes have now been confirmed to be pathogenic, including DNA repair or DNA mismatch repair genes such as APC, MLH1, and MSH2. Since familial CRC patients have poor clinical outcomes, timely clinical diagnosis and mutation screening of susceptibility genes will aid clinicians in establishing appropriate risk assessment and treatment interventions at a personal level. Here, we systematically summarize the susceptibility genes identified to date and the potential pathogenic mechanism of HNPCC and FAP development. Moreover, clinical recommendations for susceptibility gene screening, diagnosis, and treatment of HNPCC and FAP are discussed.

20.
Reprod Biomed Online ; 38(3): 397-406, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30691934

RESUMO

RESEARCH QUESTION: What is the genetic aetiology of three resistant ovary syndrome (ROS) pedigrees from 13 Chinese Han families with non-syndromic premature ovarian insufficiency (POI). DESIGN: The proband in each family was subjected to whole-exome sequencing. Bioinformatic and in-vitro functional analyses were performed for the functional characterization of the FSHR mutations. RESULTS: Four novel mutations, two homozygous mutations (c.419delA, c.1510C>T), and a compound heterozygous mutation (c.44G>A and deletion of exons 1 and 2) of FSHR were identified in the three non-syndromic POI-with-ROS families. Bioinformatic analysis predicted that the three novel point mutations in FSHR are deleterious and associated with POI in the three families, which was confirmed by in-vitro functional analysis, in which FSH-induced adenosine 3',5'-cyclic monophosphate production was abolished for all receptors. CONCLUSIONS: The three novel point mutations in FSHR were all functional inactivating mutations, and were the genetic aetiology of the three non-syndromic POI-with-ROS families. The first FSHR frameshift mutation is reported here, and the first missense mutation in the signal peptide-encoding region of FSHR to be associated with POI. Women affected by ROS should consider undergoing mutation screening for FSHR.


Assuntos
Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Receptores do FSH/genética , Adulto , Animais , Células CHO , Cricetulus , Família , Feminino , Humanos , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA