Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 14, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717845

RESUMO

BACKGROUND: As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS: Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS: CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION: The simple and cost­effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.

2.
Drug Metab Dispos ; 49(11): 985-994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462267

RESUMO

Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7S, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular specialty to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotypes in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells. SIGNIFICANCE STATEMENT: Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.


Assuntos
Cistationina gama-Liase/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-6/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Glutationa/metabolismo , Humanos , Células MCF-7 , Metionina/metabolismo , Paclitaxel/farmacologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
3.
Front Cell Dev Biol ; 9: 774957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118067

RESUMO

Ferroptosis, a newly discovered form of regulatory cell death (RCD), has been demonstrated to be distinct from other types of RCD, such as apoptosis, necroptosis, and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation and oxidative perturbation, and is inhibited by iron chelators and lipophilic antioxidants. This process is regulated by specific pathways and is implicated in diverse biological contexts, mainly including iron homeostasis, lipid metabolism, and glutathione metabolism. A large body of evidence suggests that ferroptosis is interrelated with various physiological and pathological processes, including tumor progression (neuro)degenerative diseases, and hepatic and renal failure. There is an urgent need for the discovery of novel effective ferroptosis-modulating compounds, even though some experimental reagents and approved clinical drugs have been well documented to have anti- or pro-ferroptotic properties. This review outlines recent advances in molecular mechanisms of the ferroptotic death process and discusses its multiple roles in diverse pathophysiological contexts. Furthermore, we summarize chemical compounds and natural products, that act as inducers or inhibitors of ferroptosis in the prevention and treatment of various diseases. Herein, it is particularly highlighted that natural products show promising prospects in ferroptosis-associated (adjuvant) therapy with unique advantages of having multiple components, multiple biotargets and slight side effects.

4.
Int J Radiat Biol ; 96(8): 972-979, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394793

RESUMO

Background: The value of relative biological effectiveness of tritium increases at low dose domain, which results in the suspicion of weighting factor of 1 for tritium after low dose exposure. Thus, present study was carried out to analyze the differences in the cellular responses at early and late period between low dose of tritium ß-rays and γ-rays radiation.Methods: MCF-10A cells were exposed to low dose of tritium ß-rays or γ-rays, then cellular behaviors, such as DNA double strand breaks (DSBs), apoptosis, reactive oxygen species (ROS) level and inflammatory relevant gene expression were analyzed at early and late period post-irradiation.Results: At early period the elimination of DSB foci produced by HTO is longer than γ-rays. High ROS level and a continual change of cell cycle distribution are observed in HTO radiation group. Based on the results of RNA sequencing, Ingenuity Pathway Analysis (IPA) indicates TNFR1 signaling and production of nitric oxide and ROS are activated as an acute response at 24 h post radiation. Moreover, it also shows a disturbance in cholesterol biosynthesis. The results of 30 days point that there is a lasting active inflammatory response, accompanying with a persistent high expression of relevant cytokines, such as TNF and IL1R.Conclusion: Compared to an acute response induced by γ-rays, a persistent inflammatory response exists in HTO-irradiated cells when cultured for 30 days, which might be related to accumulation of tritium in the form of organically bound tritium (OBT) in cellular DNA or lipids.


Assuntos
Partículas beta/efeitos adversos , Trítio/efeitos adversos , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia
5.
Acta Pharmacol Sin ; 39(11): 1804-1815, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29921884

RESUMO

Xuezhikang capsule (XZK) is a traditional Chinese medicine that contains lovastatin (Lv) for hyperlipidemia treatment, although it has fewer side effects than Lv. However, the pharmacokinetic mechanisms contributing to its distinct efficacy and low side effects are unclear. Mice were fed a high-fat diet (HFD) for 6 weeks to induce hyperlipidemia. We first conducted the pharmacokinetic studies in HFD mice following oral administration of Lv (10 mg/kg, i.g.) and found that HFD remarkably decreased the active form of Lv (the lovastatin acid, LvA) exposure in the circulation system, especially in the targeting organ liver, with a declined conversion from Lv to LvA, whereas the Lv (responsible for myotoxicity) exposure in muscle markedly increased. Then we compared the pharmacokinetic profiles of Lv in HFD mice after the oral administration of XZK (1200 mg/kg, i.g.) or an equivalent dose of Lv (10 mg/kg, i.g.). A higher exposure of LvA and lower exposure of Lv were observed after XZK administration, suggesting a pharmacokinetic interaction of some ingredients in XZK. Further studies revealed that HFD promoted the inflammation and inhibited carboxylesterase (CES) activities in the intestine and the liver, thus contributing to the lower transformation of Lv into LvA. In contrast, XZK inhibited the inflammation and upregulated CES in the intestine and the liver. Finally, we evaluated the effects of monacolins and phytosterols, the fractional extracts of isoflavones, on inflammatory LS174T or HepG2 cells, which showed that isoflavones inhibited inflammation, upregulated CES, and markedly enhanced the conversion of Lv into LvA. For the first time, we provide evidence that isoflavones and Lv in XZK act in concert to enhance the efficacy and reduce the side effects of Lv.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Isoflavonas/farmacologia , Lovastatina/análogos & derivados , Lovastatina/uso terapêutico , Administração Oral , Animais , Carboxilesterase/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Lovastatina/administração & dosagem , Lovastatina/metabolismo , Lovastatina/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/genética , Regulação para Cima/efeitos dos fármacos
6.
J Hazard Mater ; 287: 42-50, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25625628

RESUMO

The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.


Assuntos
Óleo Mineral/química , Modelos Químicos , Trítio/química , Hidrogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA