Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(8): 1794-1802, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39096241

RESUMO

Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in Bacillus subtilis. On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Produtos Biológicos , Endopeptidase Clp , Proteólise , Endopeptidase Clp/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Sintases/metabolismo , Adenosina Trifosfatases/metabolismo
2.
Bioorg Med Chem ; 110: 117815, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38943807

RESUMO

The adenylation (A) domain of non-ribosomal peptide synthetases (NRPSs) catalyzes the adenylation reaction with substrate amino acids and ATP. Leveraging the distinct substrate specificity of A-domains, we previously developed photoaffinity probes for A-domains based on derivatization with a 5'-O-N-(aminoacyl)sulfamoyl adenosine (aminoacyl-AMS)-appended clickable benzophenone. Although our photoaffinity probes with different amino acid warheads enabled selective detection, visualization, and enrichment of target A-domains in proteomic environments, the effects of photoaffinity linkers have not been investigated. To explore the optimal benzophenone-based linker scaffold, we designed seven photoaffinity probes for the A-domains with different lengths, positions, and molecular shapes. Using probes 2-8 for the phenylalanine-activating A-domain of gramicidin S synthetase A (GrsA), we systematically investigated the binding affinity and labeling efficiency of the endogenous enzyme in a live producer cell. Our results indicated that the labeling efficiencies of probes 2-8 tended to depend on their binding affinities rather than on the linker length, flexibility, or position of the photoaffinity group. We also identified that probe 2 with a 4,4'-diaminobenzophenone linker exhibits the highest labeling efficiency for GrsA with fewer non-target labeling properties in live cells.


Assuntos
Benzofenonas , Peptídeo Sintases , Marcadores de Fotoafinidade , Benzofenonas/química , Benzofenonas/síntese química , Benzofenonas/farmacologia , Benzofenonas/metabolismo , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/síntese química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Estrutura Molecular
3.
Oxid Med Cell Longev ; 2024: 7683793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500550

RESUMO

The extracellular signal-regulated kinase (ERK) MAPK pathway is dysregulated in various human cancers and is considered an attractive therapeutic target for cancer. Therefore, several inhibitors of this pathway are being developed, and some are already used in the clinic. We have previously identified an anticancer compound, ACA-28, with a unique property to preferentially induce ERK-dependent apoptosis in melanoma cells. To comprehensively understand the biological cellular impact induced by ACA-28, we performed a global gene expression analysis of human melanoma SK-MEL-28 cells exposed to ACA-28 using a DNA microarray. The transcriptome analysis identified nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor that combats oxidative stress, as the most upregulated genetic pathway after ACA-28 treatment. Consistently, ACA-28 showed properties to increase the levels of reactive oxygen species (ROS) as well as Nrf2 protein, which is normally repressed by proteasomal degradation and activated in response to oxidative stresses. Furthermore, the ROS scavenger N-acetyl cysteine significantly attenuated the anticancer activity of ACA-28. Thus, ACA-28 activates Nrf2 signaling and exerts anticancer activity partly via its ROS-stimulating property. Interestingly, human A549 cancer cells with constitutively high levels of Nrf2 protein showed resistance to ACA-28, as compared with SK-MEL-28. Transient overexpression of Nrf2 also increased the resistance of cells to ACA-28, while knockdown of Nrf2 exerted the opposite effect. Thus, upregulation of Nrf2 signaling protects cancer cells from ACA-28-mediated cell death. Notably, the Nrf2 inhibitor ML385 substantially enhanced the cell death-inducing property of ACA-28 in pancreatic cancer cells, T3M4 and PANC-1. Our data suggest that Nrf2 plays a key role in determining cancer cell susceptibility to ACA-28 and provides a novel strategy for cancer therapy to combine the Nrf2 inhibitor and ACA-28.


Assuntos
Melanoma , Neoplasias Pancreáticas , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melanoma/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Neoplasias Pancreáticas/tratamento farmacológico
4.
Nihon Saikingaku Zasshi ; 79(1): 1-13, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38382970

RESUMO

Proteins in the cells are born (synthesized), work, and die (decomposed). In the life of a protein, its birth is obviously important, but how it dies is equally important in living organisms. Proteases secreted into the outside of cells are used to decompose the external proteins and the degradation products are taken as the nutrients. On the other hand, there are also proteases that decompose unnecessary or harmful proteins which are generated in the cells. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for degradation of such proteins. Bacteria, which are prokaryotes, have a similar system as the proteasome. We would like to explain the bacterial degradation system of proteins or the death of proteins, which is performed by ATP-dependent protease Clp, with a particular focus on the ClpXP complex, and with an aspect as a target for antibiotics against bacteria.


Assuntos
Bactérias , Complexo de Endopeptidases do Proteassoma , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteases Dependentes de ATP/metabolismo , Bactérias/metabolismo , Transporte Biológico , Proteínas de Bactérias/metabolismo
5.
J Pept Sci ; 30(3): e3545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37721208

RESUMO

Nonribosomal peptide synthetases (NRPSs) biosynthesize nonribosomal peptide (NRP) natural products, which belong to the most promising resources for drug discovery and development because of their wide range of therapeutic applications. The results of genetic, biochemical, and bioinformatics analyses have enhanced our understanding of the mechanisms of the NRPS machinery. A major goal in NRP biosynthesis is to reprogram the NRPS machinery to enable the biosynthetic production of designed peptides. Reprogramming strategies for the NRPS machinery have progressed considerably in recent years, thereby increasing the yields and generating modified peptides. Here, the recent progress in NRPS reprogramming and its application in peptide synthesis are described.


Assuntos
Produtos Biológicos , Peptídeo Sintases , Peptídeo Sintases/genética , Peptídeo Sintases/análise , Peptídeo Sintases/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos
6.
Chem Commun (Camb) ; 59(62): 9473-9476, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477345

RESUMO

We describe activity-based protein profiling for analyzing the adenylation domains of non-ribosomal peptide synthetases (ABPP-NRPS) in bacterial proteomes. Using a range of non-proteoinogenic amino acid sulfamoyladenosines, the competitive format of ABPP-NRPS provided substrate tolerance toward non-proteinogenic amino acids. When coupled with precursor-directed biosynthesis, a non-proteinogenic amino acid (O-allyl-L-serine) was successfully incorporated into gramicidin S.


Assuntos
Aminoácidos , Peptídeos , Bactérias/metabolismo , Gramicidina , Peptídeo Sintases/química , Especificidade por Substrato
7.
Methods Mol Biol ; 2670: 285-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37184711

RESUMO

4'-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4'-phosphopantetheinyl group. To detect 4'-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5'-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4'-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4'-phosphopantetheinylation of endogenous NRPSs in complex proteomes.


Assuntos
Adenosina , Proteoma , Adenosina/química , Bactérias/metabolismo , Peptídeo Sintases/química
8.
Genes Cells ; 28(6): 457-465, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36945130

RESUMO

The extracellular-signal-regulated-kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as pancreatic cancers. ACAGT-007a (GT-7), an anti-cancer compound, stimulates ERK phosphorylation, thereby inducing growth inhibition and apoptosis in T3M4 pancreatic cancer cells. However, how GT-7 stimulates ERK phosphorylation and induces apoptosis in ERK-active T3M4 cells remains unclear. To look into the mechanism, we performed a spatiotemporal analysis of ERK phosphorylation mediated by GT-7 in T3M4 cells. The immunoblotting showed that GT-7 stimulates ERK phosphorylation within 1 h, which was more remarkable after 2 h. Importantly, apoptosis induction as evaluated by the cleaved Caspase-3 was observed only after 2-h incubation with GT-7. The immunofluorescence staining revealed the enrichment of phosphorylated ERK (phospho-ERK) in the nucleus upon 1-h incubation with GT-7. Fractionation experiments showed that GT-7 increases phospho-ERK levels in the cytoplasm within 1 h, whereas nuclear phospho-ERK accumulation is observed after 2-h incubation with GT-7. MEK inhibition by U0126 significantly diminishes nuclear phospho-ERK distribution and apoptosis induction stimulated by GT-7. Thus, GT-7 may initiate the induction of ERK phosphorylation in the cytoplasm, which leads to phospho-ERK enrichment in the nucleus. This nuclear phospho-ERK accumulation by GT-7 precedes and may underlie apoptosis induction in T3M4.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias Pancreáticas , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas
9.
Redox Biol ; 59: 102579, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563535

RESUMO

Poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132), an organogermanium, is hydrolyzed to 3-(trihydroxygermyl)propanoic acid (THGP) in aqueous solutions, and reduces inflammation, pain and cancer, whereas the underlying mechanisms remain unknown. Sulfides including H2S, a gasotransmitter, generated from l-cysteine by some enzymes including cystathionine-γ-lyase (CSE), are pro-nociceptive, since they enhance Cav3.2 T-type Ca2+ channel activity expressed in the primary afferents, most probably by canceling the channel inhibition by Zn2+ linked via coordinate bonding to His191 of Cav3.2. Given that germanium is reactive to sulfur, we tested whether THGP would directly trap sulfide, and inhibit sulfide-induced enhancement of Cav3.2 activity and sulfide-dependent pain in mice. Using mass spectrometry and 1H NMR techniques, we demonstrated that THGP directly reacted with sulfides including Na2S and NaSH, and formed a sulfur-containing reaction product, which decreased in the presence of ZnCl2. In Cav3.2-transfected HEK293 cells, THGP inhibited the sulfide-induced enhancement of T-type Ca2+ channel-dependent membrane currents. In mice, THGP, administered systemically or locally, inhibited the mechanical allodynia caused by intraplantar Na2S. In the mice with cyclophosphamide-induced cystitis and cerulein-induced pancreatitis, which exhibited upregulation of CSE in the bladder and pancreas, respectively, systemic administration of THGP as well as a selective T-type Ca2+ channel inhibitor suppressed the cystitis-related and pancreatitis-related visceral pain. These data suggest that THGP traps sulfide and inhibits sulfide-induced enhancement of Cav3.2 activity, leading to suppression of Cav3.2-dependent pain caused by sulfide applied exogenously and generated endogenously.


Assuntos
Canais de Cálcio Tipo T , Cistite , Sulfeto de Hidrogênio , Pancreatite , Dor Visceral , Camundongos , Humanos , Animais , Células HEK293 , Canais de Cálcio Tipo T/fisiologia , Sulfetos/farmacologia , Cistite/induzido quimicamente , Sulfeto de Hidrogênio/metabolismo
10.
Bioorg Med Chem Lett ; 78: 129034, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36273707

RESUMO

Although 4,5-didehydroguadiscine (12a), an alkaloid with potent melanogenesis-inhibitory activity isolated from Hornschuchia obliqua (Annonaceae), consists of an aporphine nucleus with an aromatized B-ring, to date, it has not been utilized as a template for structure-activity relationship (SAR) studies of pharmacological activities because of its exceptional structure. Accordingly, herein, five analogs (12b-12f) of 12a and five benzylisoquinoline analogs (13b-13f) lacking the C11a-C11b bond of 12b-12f were prepared. The inhibitory effects of 12b-12f and 13b-13f on melanogenesis in theophylline-stimulated B16 melanoma 4A5 cells were examined and compared with those of 12a. Melanogenesis-inhibitory activities of 12b-12f were the same as that of 12a, whereas the melanogenesis-inhibitory activities of 13b-13f were significantly inferior to those of 12a and 12b-12f. These results suggest that the C11a-C11b bond plays an essential role in the melanogenesis-inhibitory activities of 12a-12e.


Assuntos
Alcaloides , Antineoplásicos , Aporfinas , Melanoma Experimental , Animais , Melanoma Experimental/tratamento farmacológico , Melaninas , Estrutura Molecular , Aporfinas/farmacologia , Relação Estrutura-Atividade , Alcaloides/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
11.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203351

RESUMO

The mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol-3 kinase (PI3K)/AKT pathways are dysregulated in various human cancers, including pancreatic ductal adenocarcinoma (PDAC), which has a very poor prognosis due to its lack of efficient therapies. We have previously identified ACAGT-007a (GT-7), an anti-cancer compound that kills ERK-active melanoma cells by inducing ERK-dependent apoptosis. Here, we investigated the apoptosis-inducing effect of GT-7 on three PDAC cell lines and its relevance with the MAPK/ERK and PI3K/AKT signaling pathways. GT-7 induced apoptosis in PDAC cells with different KRAS mutations (MIA-Pa-Ca-2 (KRAS G12C), T3M4 (KRAS Q61H), and PANC-1 (KRAS G12D)), being T3M4 most susceptible, followed by MIA-Pa-Ca-2, and PANC-1 was most resistant to apoptosis induction by GT-7. GT-7 stimulated ERK phosphorylation in the three PDAC cells, but only T3M4 displayed ERK-activation-dependent apoptosis. Furthermore, GT-7 induced a marked down-regulation of AKT phosphorylation after a transient peak in T3M4, whereas PANC-1 displayed the strongest and most sustained AKT activation, followed by MIA-Pa-Ca-2, suggesting that sustained AKT phosphorylation as a determinant for the resistance to GT-7-mediated apoptosis. Consistently, a PI3K inhibitor, Wortmannin, abolished AKT phosphorylation and enhanced GT-7-mediated apoptosis in T3M4 and MIA-Pa-Ca-2, but not in PANC-1, which showed residual AKT phosphorylation. This is the first report that ERK stimulation alone or in combination with AKT signaling inhibition can effectively induce apoptosis in PDAC and provides a rationale for a novel concurrent targeting of the PI3K/AKT and ERK pathways.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
12.
Genes Cells ; 26(2): 109-116, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33249692

RESUMO

Dual-specificity phosphatase 6 (DUSP6) is a key negative feedback regulator of the member of the RAS-ERK MAPK signaling pathway that is associated with cellular proliferation and differentiation. Deterioration of DUSP6 expression could therefore result in deregulated growth activity. We have previously discovered ACA-28, a novel anticancer compound with a unique property to stimulate ERK phosphorylation and induce apoptosis in ERK-active melanoma cells. However, the mechanism of cancer cell-specific-apoptosis by ACA-28 remains obscure. Here, we investigated the involvement of DUSP6 in the mechanisms of the ACA-28-mediated apoptosis by using the NIH/3T3 cells overexpressing HER2/ErbB2 (A4-15 cells), as A4-15 exhibited higher ERK phosphorylation and are more susceptible to ACA-28 than NIH/3T3. We showed that A4-15 exhibited high DUSP6 protein levels, which require ERK activation. Notably, the silencing of the DUDSP6 gene by siRNA inhibited proliferation and induced apoptosis in A4-15, but not in NIH/3T3, indicating that A4-15 requires high DUSP6 expression for growth. Importantly, ACA-28 preferentially down-regulated the DUSP6 protein and proliferation in A4-15 via the proteasome, while it stimulated ERK phosphorylation. Collectively, the up-regulation of DUSP6 may exert a growth-promoting role in cancer cells overexpressing HER2. DUSP6 down-regulation in ERK-active cancer cells might have the potential as a novel cancer measure.


Assuntos
Apoptose/efeitos dos fármacos , Álcoois Benzílicos/farmacologia , Regulação para Baixo/genética , Fosfatase 6 de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Animais , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fosfatase 6 de Especificidade Dupla/metabolismo , Camundongos , Células NIH 3T3 , Oncogenes
13.
Bioorg Chem ; 103: 104137, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763519

RESUMO

The recent discovery that an ERK signaling modulator [ACA-28 (2a)] preferentially kills human melanoma cell lines by inducing ERK-dependent apoptosis has generated significant interest in the field of anti-cancer therapy. In the first SAR study on 2a, here, we successfully developed candidates (2b, 2c) both of which induce more potent and selective apoptosis towards ERK-active melanoma cells than 2a, thus revealing the structural basis for inducing the ERK-dependent apoptosis and proposing the therapeutic prospect of these candidates against ERK-dependent cancers represented by melanoma.


Assuntos
Antineoplásicos/farmacologia , Compostos Benzidrílicos/farmacologia , Carbonatos/farmacologia , Descoberta de Drogas , Ésteres/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Melanoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/química , Carbonatos/síntese química , Carbonatos/química , Relação Dose-Resposta a Droga , Ésteres/síntese química , Ésteres/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Melanoma/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Chembiochem ; 21(21): 3056-3061, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32533653

RESUMO

An important challenge in natural product biosynthesis is the biosynthetic design and production of artificial peptides. One of the most promising strategies is reprogramming adenylation (A) domains to expand the substrate repertoire of nonribosomal peptide synthetases (NRPSs). Therefore, the precise detection of subtle structural changes in the substrate binding pockets of A domains might accelerate their reprogramming. Here we show that an enzyme-linked immunosorbent assay (ELISA) using a combination of small-molecule probes can detect the effects of substrate binding pocket residue substitutions in A-domains. When coupled with a set of aryl acid A-domain variants (total of nine variants), the ELISA can analyze the subtle differences in their active-site architectures. Furthermore, the ELISA-based screening was able to identify the variants with substrate binding pockets that accepted a non-cognate substrate from an original pool of 45. These studies demonstrate that ELISA is a reliable platform for providing insights into the active-site properties of A-domains and can be applied for the reprogramming of NRPS A-domains.


Assuntos
Ensaio de Imunoadsorção Enzimática , Peptídeo Sintases/análise , Bibliotecas de Moléculas Pequenas/química , Escherichia coli/enzimologia , Conformação Molecular , Estrutura Molecular , Peptídeo Sintases/metabolismo , Peptídeos/química , Peptídeos/metabolismo
15.
Biochemistry ; 59(4): 351-363, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894971

RESUMO

Aryl acids are most commonly found in iron-scavenging siderophores but are not limited to them. The nonribosomal peptide synthetase (NRPS) codes of aryl acids remain poorly elucidated relative to those of amino acids. Here, we defined more precisely the role of active-site residues in aryl acid adenylation domains (A-domains) by gradually grafting the NRPS codes used for salicylic acid (Sal) into an archetypal aryl acid A-domain, EntE [specific for the substrate 2,3-dihydroxybenzoic acid (DHB)]. Enzyme kinetics and modeling studies of these EntE variants demonstrated that the NRPS code residues at positions 236, 240, and 339 collectively regulate the substrate specificity toward DHB and Sal. Furthermore, the EntE variants exhibited the ability to activate the non-native aryl acids 3-hydroxybenzoic acid, 3-aminobenzoic acid, 3-fluorobenzoic acid, and 3-chlorobenzoic acid. These studies enhance our knowledge of the NRPS codes of aryl acids and could be exploited to reprogram aryl acid A-domains for non-native aryl acids.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Ligases/química , Peptídeo Sintases/metabolismo , Monofosfato de Adenosina/química , Sequência de Aminoácidos , Aminoácidos/genética , Domínio Catalítico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidroxibenzoatos/química , Ligases/metabolismo , Mutação , Peptídeo Sintases/química , Ácido Salicílico/química , Sideróforos/química , Especificidade por Substrato
16.
Angew Chem Int Ed Engl ; 58(21): 6906-6910, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30945421

RESUMO

Adenylation (A) domains act as the gatekeepers of non-ribosomal peptide synthetases (NRPSs), ensuring the activation and thioesterification of the correct amino acid/aryl acid building blocks. Aryl acid building blocks are most commonly observed in iron-chelating siderophores, but are not limited to them. Very little is known about the reprogramming of aryl acid A-domains. We show that a single asparagine-to-glycine mutation in an aryl acid A-domain leads to an enzyme that tolerates a wide range of non-native aryl acids. The engineered catalyst is capable of activating non-native aryl acids functionalized with nitro, cyano, bromo, and iodo groups, even though no enzymatic activity of wild-type enzyme was observed toward these substrates. Co-crystal structures with non-hydrolysable aryl-AMP analogues revealed the origins of this expansion of substrate promiscuity, highlighting an enlargement of the substrate binding pocket of the enzyme. Our findings may be exploited to produce diversified aryl acid containing natural products and serve as a template for further directed evolution in combinatorial biosynthesis.


Assuntos
Adenina/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo Sintases/metabolismo , Monofosfato de Adenosina , Domínio Catalítico , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/genética , Peptídeo Sintases/genética , Ribossomos/metabolismo , Especificidade por Substrato
17.
J Org Chem ; 83(15): 8250-8264, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972303

RESUMO

A hitherto unreported member of γ-alkylidenebutenolides in Melodorum fruticosum (Annonaceae), (4 E)-6-benzoyloxy-7-hydroxy-2,4-heptadiene-4-olide, named as isofruticosinol (4) was isolated from the methanol extract of flowers, along with the known related butenolides, namely, the (4 Z)-isomer (3) of 4, melodrinol (1), and its (4 E)-isomer (2). To unambiguously determine the absolute configuration at the C-6 position in these butenolides, the first total syntheses of both enantiomers of 2-4 were achieved over 6-7 steps from commercially available D- or L-ribose (D- and L-5). Using the same protocol, both enantiomers of 1 were also synthesized. Based on chiral HPLC analysis of all synthetic compounds ( S- and R-1-4), all naturally occurring butenolides were assigned as partial racemic mixtures with respect to the chiral center at C-6 (enantiomeric ratio, 6 S/6 R = ∼83/17). Furthermore, the melanogenesis inhibitory activities of S- and R-1-4 were evaluated, with all shown to be potent inhibitors with IC50 values in the range 0.29-2.9 µM, regardless of differences in the stereochemistry at C-6. In particular, S-4 (IC50 = 0.29 µM) and R-4 (0.39 µM) showed potent inhibitory activities compared with that of reference standard arbutin (174 µM).


Assuntos
4-Butirolactona/análogos & derivados , Annonaceae/química , Melaninas/biossíntese , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Camundongos , Plantas Medicinais/química
18.
Chembiochem ; 18(22): 2199-2204, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28871667

RESUMO

Structural and activity studies have revealed the dynamic and transient actions of carrier protein (CP) activity in primary and secondary metabolic pathways. CP-mediated interactions play a central role in nonribosomal peptide biosynthesis, as they serve as covalent tethers for amino acid and aryl acid substrates and enable the growth of peptide intermediates. Strategies are therefore required to study protein-protein interactions efficiently. Herein, we describe activity-based probes used to demonstrate the protein-protein interactions between aryl CP (ArCP) and aryl acid adenylation (A) domains as well as the substrate specificities of the aryl acid A domains. If coupled with in-gel fluorescence imaging, this strategy allows visualization of the protein-protein interactions required to recognize and transfer the substrate to the partner ArCP. This technique has potential for the analysis of protein-protein interactions within these biosynthetic enzymes at the molecular level and for use in the combinatorial biosynthesis of new nonribosomal peptides.


Assuntos
Proteína de Transporte de Acila/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Proteína de Transporte de Acila/química , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/química , Peptídeos/química , Ligação Proteica , Conformação Proteica
19.
Genes Cells ; 22(7): 608-618, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28485554

RESUMO

The extracellular signal-regulated kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as melanoma. Melanoma remains incurable despite the use of conventional chemotherapy; consequently, development of new therapeutic agents for melanoma is highly desirable. Here, we carried out a chemical genetic screen using a fission yeast phenotypic assay and showed that ACA-28, a synthetic derivative of 1'-acetoxychavicol acetate (ACA), which is a natural ginger compound, effectively inhibited the growth of melanoma cancer cells wherein ERK MAPK signaling is hyperactivated due to mutations in the upstream activating regulators. ACA-28 more potently inhibited the growth of melanoma cells than did the parental compound ACA. Importantly, the growth of normal human epidermal melanocytes (NHEM) was less affected by ACA-28 at the same 50% inhibitory concentration. In addition, ACA-28 specifically induced apoptosis in NIH/3T3 cells which were oncogenically transformed with human epidermal growth factor receptor-2 (HER2/ErbB2), but not in the parental cells. Notably, the ACA-28-induced apoptosis in melanoma and HER2-transformed cells was abrogated when ERK activation was blocked with a specific MEK inhibitor U0126. Consistently, ACA-28 more strongly stimulated ERK phosphorylation in melanoma cells, as compared in NHEM. ACA-28 might serve as a promising seed compound for melanoma treatment.


Assuntos
Antineoplásicos/farmacologia , Álcoois Benzílicos/farmacologia , Melanoma/tratamento farmacológico , Células 3T3 , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Álcoois Benzílicos/química , Butadienos/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Molecules ; 21(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447599

RESUMO

A quantitative analytical method for five aporphine alkaloids, nuciferine (1), nornuciferine (2), N-methylasimilobine (3), asimilobine (4), and pronuciferine (5), and five benzylisoquinoline alkaloids, armepavine (6), norarmepavine (7), N-methylcoclaurine (8), coclaurine (9), and norjuziphine (10), identified as the constituents responsible for the melanogenesis inhibitory activity of the extracts of lotus flowers (the flower buds of Nelumbo nucifera), has been developed using liquid chromatography-mass spectrometry. The optimum conditions for separation and detection of these 10 alkaloids were achieved on a πNAP column, a reversed-phase column with naphthylethyl group-bonded silica packing material, with CH3CN-0.2% aqueous acetic acid as the mobile phase and using mass spectrometry equipped with a positive-mode electrospray ionization source. According to the protocol established, distributions of these 10 alkaloids in the petal, receptacle, and stamen parts, which were separated from the whole flower, were examined. As expected, excellent correlations were observed between the total alkaloid content and melanogenesis inhibitory activity. Among the active alkaloids, nornuciferine (2) was found to give a carbamate salt (2'') via formation of an unstable carbamic acid (2') by absorption of carbon dioxide from the air.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Flores/química , Lotus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Alcaloides/isolamento & purificação , Animais , Carbamatos/química , Linhagem Celular Tumoral , Cromatografia Líquida , Ativação Enzimática/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Melaninas/biossíntese , Melanoma Experimental , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA