Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Digestion ; 104(5): 357-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231829

RESUMO

BACKGROUND AND AIM: Fluoropyrimidines (FPs) are key drugs in many chemotherapy regimens; however, recipients are often prone to diarrhea due to gastrointestinal toxicity. Disruption of the intestinal epithelial barrier function by FPs leads to dysbiosis, which may exacerbate intestinal epithelial cell damage as a secondary effect and trigger diarrhea. However, despite studies on chemotherapy-induced changes in the intestinal microbiome of humans, the relationship between dysbiosis and diarrhea is unclear. In this study, we aimed to investigate the relationship between chemotherapy-induced diarrhea and the intestinal microbiome. METHODS: We conducted a single-center prospective observational study. Twenty-three patients who received chemotherapy, including FPs as first-line chemotherapy for colorectal cancer, were included. Stool samples were collected before the start of chemotherapy and after one cycle of treatment to analyze intestinal microbiome composition and perform PICRUSt predictive metagenomic analysis. RESULTS: Gastrointestinal toxicity was observed in 7 of 23 patients (30.4%), diarrhea was observed in 4 (17.4%), and nausea and anorexia were observed in 3 (13.0%). In 19 patients treated with oral FPs, the α diversity of the microbial community decreased significantly following chemotherapy only in the diarrheal group. At the phylum level, the diarrheal group showed a significant decrease in the abundance of Firmicutes and a significant increase in the abundance of Bacteroidetes with chemotherapy (p = 0.013 and 0.011, respectively). In the same groups, at the genus level, Bifidobacterium abundance was significantly decreased (p = 0.019). In contrast, in the non-diarrheal group, Actinobacteria abundance increased significantly with chemotherapy at the phylum level (p = 0.011). Further, Bifidobacterium, Fusicatenibacter, and Dorea abundance significantly increased at the genus level (p = 0.006, 0.019, and 0.011, respectively). The PICRUSt predictive metagenomic analysis revealed that chemotherapy caused significant differences in membrane transport in KEGG pathway level 2 and in 8 KEGG pathway level 3, including transporters and oxidative phosphorylation in the diarrhea group. CONCLUSION: Organic-acid-producing bacteria seem to be involved in diarrhea associated with chemotherapy, including FPs.


Assuntos
Antineoplásicos , Microbioma Gastrointestinal , Humanos , Disbiose/induzido quimicamente , Diarreia/tratamento farmacológico , Bactérias , Antineoplásicos/uso terapêutico , RNA Ribossômico 16S
2.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924373

RESUMO

A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexo Dinactina/metabolismo , Agregados Proteicos , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Complexo Dinactina/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Frações Subcelulares/metabolismo
3.
Intern Med ; 60(12): 1805-1812, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33456043

RESUMO

Objective Although colorectal polyps (CPs) can be observed with colon capsule endoscopy (CCE), it is difficult to determine the type of polyp using CCE. The objective of this study was to differentiate adenomatous polyps (APs) from hyperplastic polyps (HPs) with CCE. Methods In this single-center retrospective study, an analysis was conducted on the same CPs with both CCE and colonoscopy (CS) and histopathologically diagnosed as AP or HP. The color difference (ΔE) between the polyp surface and the surrounding mucosa was calculated using the CIE1976 L*a*b* color space method on white light (WL), flexible spectral imaging color enhancement (FICE), and blue mode (BM) CP images. We investigated the ability of the ratio of the color differences (ΔE') to differentiate between APs and HPs. Results The size of all 51 polyps (34 APs, 17 HPs) was 7.5±4.6 mm with CCE and 7.3±4.2 mm with CS, and this difference was not significant (p=0.28). The FICEΔE' of APs was 3.3±1.8, which was significantly higher than the FICEΔE' of HPs (1.3±0.6; p<0.001). A receiver operating characteristic analysis showed that FICEΔE' was useful for differentiating between APs and HPs, with an area under the curve of 0.928 (95% confidence interval, 0.843-1). The sensitivity was 91.2%, and the specificity was 88.2% with a cut-off value of 1.758. Conclusion Using FICE on CCE images of CPs and applying the CIELAB color space method, we were able to differentiate between APs and HPs with high accuracy. This method has the potential to reduce unnecessary CS procedures.


Assuntos
Endoscopia por Cápsula , Pólipos do Colo , Neoplasias Colorretais , Pólipos do Colo/diagnóstico por imagem , Colonoscopia , Neoplasias Colorretais/diagnóstico , Diagnóstico Diferencial , Humanos , Estudos Retrospectivos
4.
Oncol Lett ; 20(2): 1171-1178, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32724357

RESUMO

Reversible post-translational modification of serine and threonine residues by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation has been indicated to regulate the activities of a number of different proteins. Augmented O-GlcNAcylation contributes to the etiologies of type 2 diabetes mellitus (T2DM) and cancer. Moreover, diabetic conditions increase the risk of colorectal cancer. However, the effect of O-GlcNAcylation in patients with colorectal cancer and concurrent T2DM has not been elucidated. The current study evaluated the level of O-GlcNAcylation in patients with colorectal cancer with or without T2DM. Notably, O-GlcNAcylation levels were significantly higher in tissues from patients with T2DM compared with those in patients without T2DM, and higher in cancer tissues compared with corresponding adjacent tissues. O-GlcNAcylation and cancer stage were more strongly correlated in cancer tissues from patients with T2DM compared with those from patients without T2DM. Additionally, distant metastasis was significantly correlated with O-GlcNAcylation in cancer tissues from patients with T2DM. ß-catenin levels in colorectal cancer tissues were the highest in patients with advanced-stage cancer and concurrent T2DM. In SW480 human colon cancer cells, thiamet G (TMG) treatment and OGA silencing, which increased O-GlcNAcylation, significantly increased ß-catenin and SNAIL in high-glucose, but not during normal-glucose conditions. These data suggest that O-GlcNAcylation is closely associated with distant metastasis, most likely through upregulation of the ß-catenin/SNAIL signaling pathway in colorectal cancer patients with T2DM.

5.
Oncol Lett ; 18(5): 5555-5560, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31620200

RESUMO

Linked color imaging (LCI) is a novel endoscopic system used to increase color contrast. As LCI does not decrease luminal brightness, it may improve the detection of colonic neoplasms. However, the extent to which LCI improves the visibility of colonic polyps has not yet been determined. Between December 2016 and May 2017, patients who received total colonoscopy were consecutively recruited into this retrospective, single-center study. For each polyp identified, images obtained from white light (WL) imaging, blue laser imaging (BLI), and LCI of the same lesion and its surrounding mucosa were evaluated. The color differences (ΔE) between each lesion and its surrounding mucosa in non-magnified images were computed quantitatively using the CIELAB color space, which defines color perception according to colorimetric values, and compared among WL, BLI, LCI, and chromoendoscopy. The ΔE between the vessel and non-vessel areas in magnified images was also assessed. Of the 64 patients who were incorporated into this study, non-magnified and magnified (×80) images from 113 and 95 polyps, respectively, were assessed. The ΔE was intensified by LCI and chromoendoscopy compared with WL and BLI. The ΔE of neoplastic lesions was also intensified by LCI. In magnified images, BLI and LCI significantly increased the ΔE between the vessel and non-vessel areas compared with WL. Luminal brightness, indicated by L*, was not impaired by LCI; however, was reduced by BLI compared with WL and LCI. These results suggest that LCI enhanced the detection of colonic neoplasms without impairing luminal brightness. We propose the routine use of LCI for colonic polyp detection and BLI for magnifying observations of colonic polyps detected by LCI.

6.
PLoS One ; 9(2): e88549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586341

RESUMO

Knock-in mouse models have contributed tremendously to our understanding of human disorders. However, generation of knock-in animals requires a significant investment of time and effort. We addressed this problem by developing a novel knock-in system that circumvents several traditional challenges by establishing stem cells with acceptor elements enveloping a particular genomic target. Once established, these acceptor embryonic stem (ES) cells are efficient at directionally incorporating mutated target DNA using modified Cre/lox technology. This is advantageous, because knock-ins are not restricted to one a priori selected variation. Rather, it is possible to generate several mutant animal lines harboring desired alterations in the targeted area. Acceptor ES cell generation is the rate-limiting step, lasting approximately 2 months. Subsequent manipulations toward animal production require an additional 8 weeks, but this delimits the full period from conception of the genetic alteration to its animal incorporation. We call this system a "kick-in" to emphasize its unique characteristics of speed and convenience. To demonstrate the functionality of the kick-in methodology, we generated two mouse lines with separate mutant versions of the voltage-dependent potassium channel Kv7.2 (Kcnq2): p.Tyr284Cys (Y284C) and p.Ala306Thr (A306T); both variations have been associated with benign familial neonatal epilepsy. Adult mice homozygous for Y284C, heretofore unexamined in animals, presented with spontaneous seizures, whereas A306T homozygotes died early. Heterozygous mice of both lines showed increased sensitivity to pentylenetetrazole, possibly due to a reduction in M-current in CA1 hippocampal pyramidal neurons. Our observations for the A306T animals match those obtained with traditional knock-in technology, demonstrating that the kick-in system can readily generate mice bearing various mutations, making it a suitable feeder technology toward streamlined phenotyping.


Assuntos
Técnicas de Introdução de Genes/métodos , Canal de Potássio KCNQ2/genética , Animais , Comportamento Animal , Células-Tronco Embrionárias/metabolismo , Epilepsia Neonatal Benigna/induzido quimicamente , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mutação , Pentilenotetrazol/efeitos adversos , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo
7.
RNA ; 18(9): 1735-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22798264

RESUMO

Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.


Assuntos
Clivagem do RNA , Edição de RNA , RNA Catalítico/metabolismo , Apolipoproteínas B/genética , Sequência de Bases , Proteínas Contráteis/genética , Filaminas , Células HEK293 , Humanos , Cinética , Proteínas dos Microfilamentos/genética , Conformação de Ácido Nucleico , RNA Catalítico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA