Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(33): 54925-54938, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903392

RESUMO

Lymphatic vasculature is an important part of the cardiovascular system with multiple functions, including regulation of the return of interstitial fluid (lymph) to the bloodstream, immune responses, and fat absorption. Consequently, lymphatic vasculature defects are involved in many pathological processes, including tumor metastasis and lymphedema. BRG1 is an important player in the developmental window when the lymphatic system is initiated. In the current study, we used tamoxifen inducible Rosa26CreERT2-BRG1floxed/floxed mice that allowed temporal analysis of the impact of BRG1 inactivation in the embryo. The BRG1floxed/floxed/Cre-TM embryos exhibited edema and hemorrhage at embryonic day-13 and began to die. BRG1 deficient embryos had abnormal lymphatic sac linings with fewer LYVE1 positive lymphatic endothelial cells. Indeed, loss of BRG1 attenuated expression of a subset of lymphatic genes in-vivo. Furthermore, BRG1 binds at the promoters of COUP-TFII and LYVE1, suggesting that BRG1 modulates expression of these genes in the developing embryos. Conversely, re-expression of BRG1 in cells lacking endogenous BRG1 resulted in induction of lymphatic gene expression in-vitro, suggesting that BRG1 was both required and sufficient for lymphatic gene expression. These studies provide important insights into intrinsic regulation of BRG1-mediated lymphatic-gene expression, and further an understanding of lymphatic gene dysregulation in lymphedema and other disease conditions.

2.
RNA ; 23(5): 655-672, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28138060

RESUMO

RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.


Assuntos
RNA Catalítico/química , Riboswitch , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Glutamina/química , Glutamina/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
3.
Mol Cell Biol ; 36(15): 1990-2010, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185875

RESUMO

SWI/SNF (switching/sucrose nonfermenting)-dependent chromatin remodeling establishes coordinated gene expression programs during development, yet important functional details remain to be elucidated. We show that the Brg1 (Brahma-related gene 1; Smarca4) ATPase is globally expressed at high levels during postimplantation development and its conditional ablation, beginning at gastrulation, results in increased apoptosis, growth retardation, and, ultimately, embryonic death. Global gene expression analysis revealed that genes upregulated in Rosa26CreERT2; Brg1(flox/flox) embryos (here referred to as Brg1(d/d) embryos to describe embryos with deletion of the Brg1(flox/flox) alleles) negatively regulate cell cycle progression and cell growth. In addition, the p53 (Trp53) protein, which is virtually undetectable in early wild-type embryos, accumulated in the Brg1(d/d) embryos and activated the p53-dependent pathways. Using P19 cells, we show that Brg1 and CHD4 (chromodomain helicase DNA binding protein 4) coordinate to control target gene expression. Both proteins physically interact and show a substantial overlap of binding sites at chromatin-accessible regions adjacent to genes differentially expressed in the Brg1(d/d) embryos. Specifically, Brg1 deficiency results in reduced levels of the repressive histone H3 lysine K27 trimethylation (H3K27me3) histone mark and an increase in the amount of open chromatin at the regulatory region of the p53 and p21 (Cdkn1a) genes. These results provide insights into the mechanisms by which Brg1 functions, which is in part via the p53 program, to constrain gene expression and facilitate rapid embryonic growth.


Assuntos
Pontos de Checagem do Ciclo Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Desenvolvimento Embrionário , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
4.
RNA ; 21(6): 1066-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883046

RESUMO

This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.


Assuntos
Biologia Computacional/métodos , RNA/química , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA de Transferência/química , Software
5.
BMC Bioinformatics ; 15 Suppl 7: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25080362

RESUMO

BACKGROUND: Interactions between the epigenome and structural genomic variation are potentially bi-directional. In one direction, structural variants may cause epigenomic changes in cis. In the other direction, specific local epigenomic states such as DNA hypomethylation associate with local genomic instability. METHODS: To study these interactions, we have developed several tools and exposed them to the scientific community using the Software-as-a-Service model via the Genboree Workbench. One key tool is Breakout, an algorithm for fast and accurate detection of structural variants from mate pair sequencing data. RESULTS: By applying Breakout and other Genboree Workbench tools we map breakpoints in breast and prostate cancer cell lines and tumors, discriminate between polymorphic breakpoints of germline origin and those of somatic origin, and analyze both types of breakpoints in the context of the Human Epigenome Atlas, ENCODE databases, and other sources of epigenomic profiles. We confirm previous findings that genomic instability in human germline associates with hypomethylation of DNA, binding sites of Suz12, a key member of the PRC2 Polycomb complex, and with PRC2-associated histone marks H3K27me3 and H3K9me3. Breakpoints in germline and in breast cancer associate with distal regulatory of active gene transcription. Breast cancer cell lines and tumors show distinct patterns of structural mutability depending on their ER, PR, or HER2 status. CONCLUSIONS: The patterns of association that we detected suggest that cell-type specific epigenomes may determine cell-type specific patterns of selective structural mutability of the genome.


Assuntos
Algoritmos , Metilação de DNA , Epigenômica/métodos , Genoma Humano , Software , DNA/genética , DNA/metabolismo , Epigênese Genética , Instabilidade Genômica , Células Germinativas/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/genética
6.
Bioinformation ; 5(8): 310-4, 2011 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383916

RESUMO

Matrix Metalloproteinase are family of enzymes responsible for degradation of extracellular matrix. MMP9 (gelatinase B) is one of the common matrix metalloproteinase that is associated with tissue destruction in a number of disease states such as rheumatoid arthiritis, fibrotic lung disease, dilated cardiomyopathy, as well as cancer invasion and metastasis. Recent study demonstrates that increased expression of MMP9 results in augmentation of myopathy with increased inflammation and fibernecrosis. Previous studies do not provide any conclusive information related to structural specificity of MMP9 inhibitors towards its active site, but with the availability of experimental structures it is now possible to study the structural specificity of MMP9 inhibitors. In light of availability of this information, we have applied docking and molecular dynamics approach to study the binding of inhibitors to the active site of MMP9. Three categories of inhibitor consisting of sulfonamide hydroxamate, thioester, and carboxylic moieties as zinc binding groups (ZBG) were chosen in the present study. Our docking results demonstrate that thioester based zinc binding group gives favourable docking scores as compared to other two groups. Molecular Dynamics simulations further reveal that tight binding conformation for thioester group has high specificity for MMP9 active site. Our study provides valuable insights on inhibitor specificity of MMP9 which provides valuable hints for future design of potent inhibitors and drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA