Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(10): 774-787, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018436

RESUMO

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
2.
J Lipid Res ; 63(3): 100168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051413

RESUMO

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Assuntos
Apolipoproteína A-I , Colesterol , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipídeos/metabolismo
4.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819213

RESUMO

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Cardiovasculares/etiologia , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , alfa 1-Antitripsina/metabolismo , Apolipoproteína C-II/análise , Apolipoproteínas/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Risco , Triglicerídeos/análise , alfa 1-Antitripsina/química
5.
Hum Gene Ther ; 31(3-4): 219-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31842627

RESUMO

Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.


Assuntos
Antagomirs/genética , Colesterol/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Antagomirs/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Humanos , Transporte de RNA , Pequeno RNA não Traduzido/genética
6.
Hum Gene Ther ; 30(2): 236-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30079772

RESUMO

Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Apolipoproteína A-I/metabolismo , Aterosclerose , Colesterol/metabolismo , Células Endoteliais , Terapia Genética , Transportador 1 de Cassete de Ligação de ATP/genética , Adenoviridae , Animais , Apolipoproteína A-I/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/terapia , Bovinos , Colesterol/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Vetores Genéticos , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Coelhos
7.
Biochim Biophys Acta ; 1861(12 Pt A): 1968-1979, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671775

RESUMO

ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.


Assuntos
Androstenos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/metabolismo , Monensin/farmacologia , Palmitatos/farmacologia , Probucol/farmacologia , Tionas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Norbornanos , Tamanho da Partícula , Fosfolipídeos/metabolismo , Células RAW 264.7 , Tiocarbamatos
8.
J Lipid Res ; 57(1): 100-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531812

RESUMO

Low-grade chronic inflammation plays an important role in the pathogenesis of obesity-induced insulin resistance. ABCA1 is essential for reverse cholesterol transport and HDL synthesis, and protects against macrophage inflammation. In the present study, the effects of ABCA1 deficiency in hematopoietic cells on diet-induced inflammation and insulin resistance were tested in vivo using bone marrow transplanted (BMT)-WT and BMT-ABCA1(-/-) mice. When challenged with a high-fat high-carbohydrate diabetogenic diet with added cholesterol (HFHSC), BMT-ABCA1(-/-) mice displayed enhanced insulin resistance and impaired glucose tolerance as compared with BMT-WT mice. The worsened insulin resistance and impaired glucose tolerance in BMT-ABCA1(-/-) mice were accompanied by increased macrophage accumulation and inflammation in adipose tissue and liver. Moreover, BMT-ABCA1(-/-) mice had significantly higher hematopoietic stem cell proliferation, myeloid cell expansion, and monocytosis when challenged with the HFHSC diet. In vitro studies indicated that macrophages from ABCA1(-/-) mice showed significantly increased inflammatory responses induced by saturated fatty acids. Taken together, these studies point to an important role for hematopoietic ABCA1 in modulating a feed-forward mechanism in obesity such that inflamed tissue macrophages stimulate the production of more monocytes, leading to an exacerbation of inflammation and associated disease processes.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Resistência à Insulina/fisiologia , Transportador 1 de Cassete de Ligação de ATP/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Colesterol/farmacologia , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/metabolismo , Monócitos/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Obesidade/patologia , Receptores de LDL/metabolismo
9.
J Lipid Res ; 56(12): 2337-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26489644

RESUMO

In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1(-/-) cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Restrição Calórica , Colesterol/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Lipoproteínas/genética , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética
10.
J Proteome Res ; 14(7): 2792-806, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26011469

RESUMO

Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL's cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL's proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.


Assuntos
Falência Renal Crônica/sangue , Lipoproteínas HDL/sangue , Diálise Renal , Adulto , Sequência de Aminoácidos , Cistatina C/química , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular
11.
J Lipid Res ; 56(8): 1519-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995210

RESUMO

Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.


Assuntos
HDL-Colesterol/metabolismo , Proteoma/metabolismo , Adulto , Animais , HDL-Colesterol/sangue , HDL-Colesterol/química , Citoproteção , Endotoxinas/toxicidade , Humanos , Inflamação/sangue , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/metabolismo
12.
FASEB J ; 27(7): 2880-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23543682

RESUMO

Nascent high-density lipoprotein (HDL) particles arise in different sizes. We have sought to uncover factors that control this size heterogeneity. Gel filtration, native PAGE, and protein cross-linking were used to analyze the size heterogeneity of nascent HDL produced by BHK-ABCA1, RAW 264.7, J774, and HepG2 cells under different levels of two factors considered as a ratio, the availability of apolipoprotein AI (apoAI) -accessible cell lipid, and concentration of extracellular lipid-free apoAI. Increases in the available cell lipid:apoAI ratio due to either elevated ATP-binding cassette transporter A1 (ABCA1) expression and activity or raised cell density (i.e., increasing numerator) shifted the production of nascent HDL from smaller particles with fewer apoAI molecules per particle and fewer molecules of choline-phospholipid and cholesterol per apoAI molecule to larger particles that contained more apoAI and more lipid per molecule of apoAI. A further shift to larger particles was observed in BHK-ABCA1 cells when the available cell lipid:apoAI ratio was raised still higher by decreasing the apoAI concentration (i.e., the denominator). These changes in nascent HDL biogenesis were reminiscent of the transition that occurs in the size composition of reconstituted HDL in response to an increasing initial lipid:apoAI molar ratio. Thus, the ratio of available cell lipid:apoAI is a fundamental cause of nascent HDL size heterogeneity, and rHDL formation is a good model of nascent HDL biogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Lipídeos/análise , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteína A-I/química , Contagem de Células , Linhagem Celular , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Células Hep G2 , Humanos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Lipoproteínas HDL/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mifepristona/farmacologia , Mutação , Tamanho da Partícula
13.
J Clin Endocrinol Metab ; 97(5): 1598-605, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22399518

RESUMO

CONTEXT: Mifepristone is a glucocorticoid and progestin antagonist under investigation for the treatment of Cushing's syndrome. Mifepristone decreases high-density lipoprotein (HDL) cholesterol (HDL-C) levels in treated patients, but the clinical significance of this is unclear because recent studies suggest that functional properties of HDL predict cardiovascular disease status better than does HDL-C concentration. OBJECTIVE: The aim of the study was to characterize the impact of mifepristone administration on HDL particle concentration and function. DESIGN AND SETTING: We conducted a double-blind, randomized, placebo-controlled trial at a single-site, clinical research center. PARTICIPANTS: Thirty healthy postmenopausal female volunteers participated in the study. INTERVENTION: Individuals were randomized to receive daily oral mifepristone (600 mg) or placebo for 6 wk. MAIN OUTCOME MEASURES: We measured HDL-C, serum HDL particle concentration, and HDL-mediated cholesterol efflux by treatment group. RESULTS: As expected, ACTH, cortisol, estradiol, and testosterone levels increased in the mifepristone group. Mifepristone treatment decreased HDL-C and HDL particle concentration by 26 and 25%, respectively, but did not alter pre-ß HDL concentration. In contrast, the serum HDL-mediated cholesterol efflux decreased with mifepristone treatment by only 12%, resulting in an effective increase of the efflux capacity per HDL particle. No changes were observed in cholesterol ester transfer protein or lecithin:cholesterol acyltransferase activity. CONCLUSIONS: Treatment with mifepristone reduced HDL-C, HDL particle concentration, and serum HDL cholesterol efflux in postmenopausal women. However, on a per particle basis, the efflux capacity of serum HDL increased. These observations support the concept that a decrease in HDL-C may not represent proportional impairment of HDL function.


Assuntos
HDL-Colesterol/sangue , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Pós-Menopausa , Progesterona/antagonistas & inibidores , Idoso , Método Duplo-Cego , Feminino , Humanos , Lipoproteínas HDL/sangue , Pessoa de Meia-Idade
14.
Steroids ; 77(5): 454-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266332

RESUMO

Exogenous androgens can lower HDL-cholesterol (HDL-C) concentrations, yet men with low serum testosterone have elevated rates of cardiovascular disease (CVD). HDL function may better predict CVD risk than absolute HDL-C quantity. We evaluated the acute effects of medical castration in men on HDL-C, cholesterol efflux capacity and HDL protein composition. Twenty-one healthy men, ages 18-55, received the GnRH antagonist acyline and one of the following for 28days: Group 1: placebo, Group 2: transdermal testosterone gel and placebo, Group 3: transdermal testosterone gel and an aromatase inhibitor. Sex steroids, fasting lipids, and cholesterol efflux to apoB-depleted serum were measured in all subjects. The HDL proteome was assessed in Group 1 subjects only. In Group 1, serum testosterone concentrations were reduced by >95%, and HDL-C and cholesterol efflux capacity increased (p=0.02 and p=0.03 vs. baseline, respectively). HDL-associated clusterin increased significantly with sex steroid withdrawal (p=0.007 vs. baseline). Testosterone withdrawal in young, healthy men increases HDL-C and cholesterol efflux capacity. Moreover, sex steroid deprivation changes HDL protein composition. Further investigation of the effects of sex steroids on HDL composition and function may help resolve the apparently conflicting data regarding testosterone, HDL-C, and CVD risk.


Assuntos
Colesterol/sangue , Clusterina/sangue , Lipoproteínas HDL/sangue , Nitrilas/administração & dosagem , Oligopeptídeos/administração & dosagem , Testosterona/administração & dosagem , Triazóis/administração & dosagem , Adolescente , Adulto , Anastrozol , Androgênios/administração & dosagem , Androgênios/sangue , Apolipoproteínas B/sangue , Inibidores da Aromatase/administração & dosagem , HDL-Colesterol/sangue , Esquema de Medicação , Jejum/sangue , Hormônio Liberador de Gonadotropina/administração & dosagem , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Testosterona/sangue , Fatores de Tempo , Adulto Jovem
15.
Biochim Biophys Acta ; 1821(3): 358-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22020260

RESUMO

Diabetes and insulin resistance increase the risk of cardiovascular disease caused by atherosclerosis through mechanisms that are poorly understood. Lipid-loaded macrophages are key contributors to all stages of atherosclerosis. We have recently shown that diabetes associated with increased plasma lipids reduces cholesterol efflux and levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in mouse macrophages, which likely contributes to macrophage lipid accumulation in diabetes. Furthermore, we and others have shown that unsaturated fatty acids reduce ABCA1-mediated cholesterol efflux, and that this effect is mediated by the acyl-CoA derivatives of the fatty acids. We therefore investigated whether acyl-CoA synthetase 1 (ACSL1), a key enzyme mediating acyl-CoA synthesis in macrophages, could directly influence ABCA1 levels and cholesterol efflux in these cells. Mouse macrophages deficient in ACSL1 exhibited reduced sensitivity to oleate- and linoleate-mediated ABCA1 degradation, which resulted in increased ABCA1 levels and increased apolipoprotein A-I-dependent cholesterol efflux in the presence of these fatty acids, as compared with wildtype mouse macrophages. Conversely, overexpression of ACSL1 resulted in reduced ABCA1 levels and reduced cholesterol efflux in the presence of unsaturated fatty acids. Thus, the reduced ABCA1 and cholesterol efflux in macrophages subjected to conditions of diabetes and elevated fatty load may, at least in part, be mediated by ACSL1. These observations raise the possibility that ABCA1 levels could be increased by inhibition of acyl-CoA synthetase activity in vivo. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Coenzima A Ligases/metabolismo , Ácido Linoleico/fisiologia , Macrófagos/metabolismo , Ácido Oleico/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Substituição de Aminoácidos , Animais , Apolipoproteínas A/metabolismo , Linhagem Celular , Coenzima A Ligases/genética , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Regulação da Expressão Gênica , Ácido Linoleico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Ácido Oleico/metabolismo , Proteólise , Triglicerídeos/metabolismo , Aumento de Peso
16.
Biochim Biophys Acta ; 1821(3): 425-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22179025

RESUMO

The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Gordura Abdominal/metabolismo , Expressão Gênica , Lipoproteínas/metabolismo , Obesidade/metabolismo , Redução de Peso , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Gordura Abdominal/patologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Restrição Calórica , Movimento Celular , Colesterol/metabolismo , Feminino , Lipólise , Lipoproteínas/genética , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/dietoterapia , Obesidade/fisiopatologia , Triglicerídeos/metabolismo
17.
Mol Ther ; 19(10): 1833-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21772254

RESUMO

Expression of atheroprotective genes in the blood vessel wall is potentially an effective means of preventing or reversing atherosclerosis. Development of this approach has been hampered by lack of a suitable gene-transfer vector. We used a helper-dependent adenoviral (HDAd) vector to test whether expression of apolipoprotein A-I (apoA-I) in the artery wall could retard the development of atherosclerosis in hyperlipidemic rabbits. Carotid arteries were infused with an HDAd expressing rabbit apoA-I or a "null" HDAd and harvested 2 and 4 weeks later. ApoA-I mRNA and protein were detected only in HDAdApoAI arteries. Lesion size, lipid and macrophage content, and adhesion molecule expression were similar in both groups at 2 weeks. Between 2 and 4 weeks, most of these measures of atherosclerosis increased in HDAdNull arteries, but were stable or decreased in HDAdApoAI arteries (P ≤ 0.04 for all end points in 4-week HDAdApoAI versus HDAdNull arteries). A longer-term study in chow-fed rabbits revealed persistence of HDAd vector DNA and apoA-I expression for ≥48 weeks, with stable vector DNA content and apoA-I expression from 4 to 48 weeks. Expression of apoA-I in arterial endothelium significantly retards atherosclerosis. HDAd provides prolonged, stable expression of a therapeutic transgene in the artery wall.


Assuntos
Apolipoproteína A-I/metabolismo , Aterosclerose/prevenção & controle , Artérias Carótidas/metabolismo , Endotélio Vascular/metabolismo , Animais , Apolipoproteína A-I/genética , Colesterol/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Coelhos , Túnica Íntima/metabolismo , Túnica Íntima/patologia
18.
Mol Ther ; 18(12): 2121-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20808287

RESUMO

Arterial endothelial cells (EC) are attractive targets for gene therapy of atherosclerosis because they are accessible to hematogenous and catheter-based vector delivery and overlie atherosclerotic plaques. Vector-mediated expression-in EC-of proteins that mediate cholesterol transfer out of the artery wall and decrease inflammation could prevent and reverse atherosclerosis. However, clinical application of this strategy is limited by lack of a suitable gene-transfer vector. First-generation adenovirus (FGAd) is useful for EC gene transfer in proof-of-concept studies, but is unsuitable for atheroprotective human gene therapy because of limited duration of expression and proinflammatory effects. Moreover, others have reported detrimental effects of FGAd on critical aspects of EC physiology including proliferation, migration, and apoptosis. Here, we investigated whether helper-dependent adenovirus (HDAd) either alone or expressing an atheroprotective gene [apolipoprotein A-I (apoA-I)] could circumvent these limitations. In contrast to control FGAd, HDAd did not alter any of several critical EC physiologic functions (including proliferation, migration, apoptosis, metabolic activity, and nitric oxide (NO) production) and did not stimulate proinflammatory pathways [including expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and interleukin-6 (IL-6)]. Expression of apoA-I by HDAd reduced EC VCAM-1 expression. HDAd is a promising vector and apoA-I is a promising gene for atheroprotective human gene therapy delivered via EC.


Assuntos
Adenoviridae/genética , Apolipoproteína A-I/farmacologia , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Terapia Genética , Vetores Genéticos , Animais , Antígenos CD/metabolismo , Aorta/citologia , Aorta/efeitos dos fármacos , Apolipoproteína A-I/metabolismo , Bovinos , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Óxido Nítrico/metabolismo
19.
J Biol Chem ; 284(47): 32336-43, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19783654

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is a cell membrane protein that exports excess cholesterol from cells to apolipoprotein (apo) A-I, the major protein in high density lipoproteins. Genetic studies have shown that ABCA1 protects against cardiovascular disease. The interaction of apoA-I with ABCA1 promotes cholesterol removal and activates signaling molecules, such as Janus kinase 2 (JAK2), that optimize the lipid export activity of ABCA1. Here we show that the ABCA1-mediated activation of JAK2 also activates STAT3, which is independent of the lipid transport function of ABCA1. ABCA1 contains two candidate STAT3 docking sites that are required for the apoA-I/ABCA1/JAK2 activation of STAT3. The interaction of apoA-I with ABCA1-expressing macrophages suppressed the ability of lysopolysaccaride to induce the inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, which was reversed by silencing STAT3 or ABCA1. Thus, the apoA-I/ABCA1 pathway in macrophages functions as an anti-inflammatory receptor through activation of JAK2/STAT3. These findings implicate ABCA1 as a direct molecular link between the cardioprotective effects of cholesterol export from arterial macrophages and suppressed inflammation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Colesterol/metabolismo , Cricetinae , Inativação Gênica , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipídeos/química , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
J Lipid Res ; 47(1): 107-14, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16210729

RESUMO

ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Lipídeos , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Apolipoproteína A-I/metabolismo , Sítios de Ligação , Linhagem Celular , Cricetinae , Humanos , Janus Quinase 2 , Cinética , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA