Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39367983

RESUMO

There is an urgent need for improved methods for early screening and rapid diagnosis of cervical cancer since current conventional screening methods are plagued by operator subjectivity and unnecessary biopsies. IR808 is a tumour-targeting near-infrared (NIR) fluorescent dye that permits NIR imaging without the requirement of chemical conjugation. Our study investigates an IR808-based strategy for real-time monitoring of the cervix in vivo and rapid assessment of cervical specimens in vitro. We investigated the uptake of IR808 in vitro using normal cervical epithelial cells and three cervical cancer cell lines. The biodistribution of IR808 was examined in vivo via intravenous injection into tumour-bearing mice. Additionally, in vitro tissues were stained with IR808 to simulate the identification of cervical tumors in the clinical setting. Biocompatibility of the dye in both cellular and animal models was also examined. IR808 exhibited significant tumour-to-background ratios in fluorescence molecular imaging of in vivo tumors in nude mice. The application of NIR fluorescent dye IR808 in specific imaging screening, safe and non-invasive real-time monitoring, and rapid identification of cervical tumors from tissue specimens is expected to improve current screening methods for cervical cancer.

2.
Bioconjug Chem ; 35(7): 1064-1074, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38980173

RESUMO

The innovative PD-1/PD-L1 pathway strategy is gaining significant traction in cancer therapeutics. However, fluctuating response rates of 20-40% to PD-1/PD-L1 inhibitors, coupled with the risk of hyperprogression after immunotherapy, underscore the need for accurate patient selection and the identification of more beneficiaries. Molecular imaging, specifically near-infrared (NIR) fluorescence imaging, is a valuable alternative for real-time, noninvasive visualization of dynamic PD-L1 expression in vivo. This research introduces AUNP-12, a novel PD-L1-targeting peptide antagonist conjugated with Cy5.5 and CH1055 for first (NIR-I) and second near-infrared (NIR-II) imaging. These probes have proven to be effective in mapping PD-L1 expression across various mouse tumor models, offering insights into tumor-immune interactions. This study highlights the potential of AUNP-12-Cy5.5 and AUNP-12-CH1055 for guiding clinical immunotherapy through precise patient stratification and dynamic monitoring, supporting the shift toward molecular imaging for personalized cancer care.


Assuntos
Antígeno B7-H1 , Corantes Fluorescentes , Ouro , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análise , Corantes Fluorescentes/química , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Humanos , Ouro/química , Imagem Óptica/métodos , Carbocianinas/química , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Raios Infravermelhos
3.
ACS Pharmacol Transl Sci ; 7(7): 2196-2203, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022367

RESUMO

Histone deacetylase 6 (HDAC6) enzyme plays a crucial role in a variety of cellular processes related to cancer, and inhibition of HDAC6 is emerging as an effective strategy for cancer treatment. Although several hydroxamate-based HDAC6 inhibitors showed promising anticancer activities, the intrinsic defects such as poor selectivity, stability, and pharmacokinetics limited their application. In this study, a potent selenocyanide-bearing HDAC6 inhibitor, 5-phenylcarbamoylpentyl selenocyanide (SelSA), was evaluated for its antihepatocellular carcinoma (HCC) activity and further explored for its antitumor mechanisms. In vitro studies demonstrated that SelSA exhibited excellent antiproliferative activity against three HCC cells HepG2 (2.3 ± 0.29 µM), Huh7 (0.83 ± 0.48 µM), and LM3 (2.6 ± 0.24 µM). Further studies indicated that SelSA could downregulate the expression of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, inhibit the growth, invasion, and migration of Huh7 cells, and promote their apoptosis. Moreover, SelSA significantly suppressed tumor growth in Huh7 xenograft mouse models. Our findings suggest that SelSA could be a potential therapeutic agent for HCC.

4.
Indian J Thorac Cardiovasc Surg ; 40(3): 332-340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38681715

RESUMO

Purpose: Adenoid cystic carcinoma (ACC) of the trachea is a rare malignancy. We report a patient with ACC who underwent multimodal management including tracheal resection. A systematic review was also conducted on tracheal resection for ACC. Methods: A literature search was conducted on MEDLINE, Embase, and PubMed using the search terms "trachea AND adenoid cystic carcinoma AND (surgery OR resection)" and articles from 2000 to August 2021 were identified. A total of 29 journal articles were included in the review. Results: A total of 403 patients underwent surgery for tracheal ACCs. The mean age was 48.1 years and 54.7% were female. The commonest anatomical location was the lower trachea (46.9%). The mean time from symptom onset to diagnosis was 16.6 months with the commonest symptom being dyspnoea (52%). Fifty-eight percent of the patients had intraluminal growth. Tracheal resection (46.2%) and access via thoracotomy (41.4%) were the commonest procedures described. The mean length of trachea resected was 39.2 mm and the mean tumour size was 31.5 mm. 16.8% of lymph nodes were involved and 73.8% of cases had positive resection margins. The overall complication rate was 1.4-5.4% and the in-hospital mortality rate was 9.8%. The overall survival reported was 61.7% at 5 years and 54.6% at 10 years. Conclusion: Surgical resection followed by adjuvant radiotherapy is the mainstay in the treatment of tracheal ACC, notwithstanding the high rates of involved margins. Achieving tension-free anastomosis should be the first priority given the favourable response of adjuvant therapies in reducing recurrence rate and improving overall survival.

5.
Lab Chip ; 24(7): 1987-1995, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38372397

RESUMO

Uracil-DNA glycosylase (UDG) is a base excision repair (BER) enzyme, which catalyzes the hydrolysis of uracil bases in DNA chains that contain uracil and N-glycosidic bonds of the sugar phosphate backbone. The expression of UDG enzyme is associated with a variety of genetic diseases including cancers. Hence, the identification of UDG activity in cellular processes holds immense importance for clinical investigation and diagnosis. In this study, we employed Cas12a protein and enzyme-assisted cycle amplification technology with a test strip to establish a precise platform for the detection of UDG enzyme. The designed platform enabled amplifying and releasing the target probe by reacting with the UDG enzyme. The amplified target probe can subsequently fuse with crRNA and Cas12a protein, stimulating the activation of the Cas12a protein to cleave the signal probe, ultimately generating a fluorescent signal. This technique showed the ability for evaluating UDG enzyme activity in different cell lysates. In addition, we have designed a detection probe to convert the fluorescence signal into test strip bands that can then be observed with the naked eye. Hence, our tool presented potential in both biomedical research and clinical diagnosis related to DNA repair enzymes.


Assuntos
Sistemas CRISPR-Cas , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Limite de Detecção , DNA/química , Uracila/química
6.
Small Methods ; 8(3): e2301266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009771

RESUMO

microRNAs (miRNAs) are a class of non-coding, small RNAs that play an important role in diverse biological processes and diseases. By regulating the expression of eukaryotic genes post-transcriptionally in a sequence-specific manner, miRNAs are widely used to design synthetic RNA switches. However, most of the RNA switches are often dependent on the corresponding ligand molecules, whose specificity and concentration would affect the efficiency of synthetic RNA circuits. Here, a fused transcriptional repressor Gal4BD-Rluc based gene-switch system Gal-miR for miRNA visualization and gene regulation is described. By placing a luciferase downstream gene under the control of endogenous miRNA machinery, the Gal-miR system makes the conversion of miRNA-mediated gene silencing into a ratiometric bioluminescent signal, which quantitatively reflected miRNA-206 activity during myogenic differentiation. Moreover, it demonstrates that this gene-switch system can effectively inhibit breast cancer cell viability, migration and invasion under the control of specific miRNAs by replacing the downstream gene with melittin functional gene. The study proposes a powerful modular genetic design for achieving precise control of transgene expression in a miRNA responsive way, as well as visualizing the dynamics of miRNA activity.


Assuntos
MicroRNAs , MicroRNAs/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular
7.
EBioMedicine ; 98: 104880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035463

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common malignancy globally and ranks third in terms of both mortality and incidence rates. Surgical resection holds potential as a curative approach for HCC. However, the residual disease contributes to a high 5-year recurrence rate of 70%. Due to their excellent specificity and optical properties, fluorescence-targeted probes are deemed effective auxiliary tools for addressing residual lesions, enabling precise surgical diagnosis and treatment. Research indicates histone deacetylase 6 (HDAC6) overexpression in HCC cells, making it a potential imaging biomarker. This study designed a targeted small-molecule fluorescent probe, SeCF3-IRDye800cw (SeCF3-IRD800), operating within the Second near-infrared window (NIR-II, 1000-1700 nm). The study confirms the biocompatibility of SeCF3-IRD800 and proceeds to demonstrate its applications in imaging in vivo, fluorescence-guided surgery (FGS) for liver cancer, liver fibrosis imaging, and clinical samples incubation, thereby preliminarily validating its utility in liver cancer. METHODS: SeCF3-IRD800 was synthesized by combining the near-infrared fluorescent dye IRDye800cw-NHS with an improved HDAC6 inhibitor. Initially, a HepG2-Luc subcutaneous tumor model (n = 12) was constructed to investigate the metabolic differences between SeCF3-IRD800 and ICG in vivo. Subsequently, HepG2-Luc (n = 12) and HCCLM3-Luc (n = 6) subcutaneous xenograft mouse models were used to assess in vivo targeting by SeCF3-IRD800. The HepG2-Luc orthotopic liver cancer model (n = 6) was employed to showcase the application of SeCF3-IRD800 in FGS. Liver fibrosis (n = 6) and HepG2-Luc orthotopic (n = 6) model imaging results were used to evaluate the impact of different pathological backgrounds on SeCF3-IRD800 imaging. Three groups of fresh HCC and normal liver samples from patients with liver cancer were utilized for SeCF3-IRD800 incubation ex vivo, while preclinical experiments illustrated its potential for clinical application. FINDINGS: The HDAC6 inhibitor 6 (SeCF3) modified with trifluoromethyl was labeled with IRDy800CW-NHS to synthesize the small-molecule targeted probe SeCF3-IRD800, with NIR-II fluorescence signals. SeCF3-IRD800 was rapidly metabolized by the kidneys and exhibited excellent biocompatibility. In vivo validation demonstrated that SeCF3-IRD800 achieved optimal imaging within 8 h, displaying high tumor fluorescence intensity (7658.41 ± 933.34) and high tumor-to-background ratio (5.20 ± 1.04). Imaging experiments with various expression levels revealed its capacity for HDAC6-specific targeting across multiple HCC tumor models, suitable for NIR-II intraoperative imaging. Fluorescence-guided surgery experiments were found feasible and capable of detecting sub-visible 2 mm tumor lesions under white light, aiding surgical decision-making. Further imaging of liver fibrosis mice showed that SeCF3-IRD800's imaging efficacy remained unaffected by liver pathological conditions. Correlations were observed between HDAC6 expression levels and corresponding fluorescence intensity (R2 = 0.8124) among normal liver, liver fibrosis, and HCC tissues. SeCF3-IRD800 identified HDAC6-positive samples from patients with HCC, holding advantages for perspective intraoperative identification in liver cancer. Thus, the rapidly metabolized HDAC6-targeted small-molecule NIR-II fluorescence probe SeCF3-IRD800 holds significant clinical translational value. INTERPRETATION: The successful application of NIR-II fluorescence-guided surgery in liver cancer indicates that SeCF3-IRD800 has great potential to improve the clinical diagnosis and treatment of liver cancer, and could be used as an auxiliary tool for surgical treatment of liver cancer without being affected by liver pathology. FUNDING: This paper is supported by the National Natural Science Foundation of China (NSFC) (92,059,207, 62,027,901, 81,930,053, 81,227,901, 82,272,105, U21A20386 and 81,971,773), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011244.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Corantes Fluorescentes , Desacetilase 6 de Histona , Cirrose Hepática , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Sondas Moleculares
8.
Anal Chem ; 95(16): 6748-6756, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042809

RESUMO

Synthetic genetic biosensors that can operate at the transcriptional and translation levels have been widely applied in the control of cellular behaviors and functions. However, the regulation of genetic circuits is often accompanied by the introduction of exogenous substances or the endogenous generation of inhibitory products, which would bring uncontrollable hazards to biological safety and reduce the efficiency of the system. Here, we described a miRNA-responsive CopT-CopA (miCop) genetic biosensor system to realize real-time monitoring of the intracellular expression of miRNA-124a during neurogenesis or miRNA-122 under the stimulation of extracellular drugs in living cells and animals. Furthermore, to prove the modularity of the system, we engineered this miCop to tune the expression of the DTA (diphtheria toxin A) gene and showed its powerful capacity to kill cancer cells by inducing apoptosis and cell cycle arrest based on miRNA response. This study provides an effective means to couple miRNA sensing with miRNA-responsive gene modulation, which may open up new diagnostic or therapeutic applications.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Animais , MicroRNAs/genética , Regulação da Expressão Gênica , Técnicas Biossensoriais/métodos
9.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979122

RESUMO

Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins' maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of ßVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana.

10.
Basic Clin Pharmacol Toxicol ; 132(3): 253-262, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36507595

RESUMO

BACKGROUND: Oesophageal adenocarcinoma (EAC) is a highly lethal cancer associated with a rapidly rising incidence and a poor prognosis. Alantolactone, a sesquiterpene lactone isolated from inula helenium, has anti-inflammatory, antimicrobial, neuroprotective activities, and anticancer properties. OBJECTIVE: In the present study, the anticancer effects of alantolactone on the human EAC cells were investigated in vitro and in vivo. METHODS AND FINDINGS: After treated with alantolactone, the cell viability of KYAE-1, KYAE-2, OE19, and OE33 cells reduced significantly compared with that of the control cells. Alantolactone induced apoptosis of the EAC cell lines by inhibiting the protein expression levels of nuclear factor erythroid2-related factor 2 (Nrf2). Furthermore, the apoptosis-inducing effect of alantolactone was enhanced by Nrf2 knockdown while reduced by overexpression of Nrf2. Antioxidant α-tocopherol and glutathione can protect EAC cell lines against alantolactone. A xenograft nude mice model showed that alantolactone can inhibit EAC growth in vivo. CONCLUSIONS: Alantolactone inhibits oesophageal adenocarcinoma cells through Nrf2-mediated reactive oxygen species (ROS) increment. Alantolactone maybe a potential therapeutical candidate for treating EAC.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Espécies Reativas de Oxigênio , Sesquiterpenos de Eudesmano , Animais , Humanos , Camundongos , Adenocarcinoma/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Lactonas/farmacologia , Camundongos Nus , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Neoplasias Esofágicas/tratamento farmacológico
11.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188788, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36049581

RESUMO

Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.


Assuntos
Histona Desacetilases , Neoplasias , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Anal Chem ; 94(40): 14012-14020, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166661

RESUMO

Breast cancer is the most common malignancy in women and may become worse when a high concentration of hydrazine is absorbed from the environment or drug metabolite. Therefore, rapid and sensitive detection of hydrazine in vivo is beneficial for people's health. In this work, a novel estrogen receptor α (ERα)-targeted near-infrared fluorescence probe was designed to detect hydrazine levels. The probe showed good ERα affinity and an excellent fluorescence response toward hydrazine. Selectivity experiments demonstrated that the probe had a strong anti-interference ability. Mechanistic studies, including mass spectrometry (MS) and density functional theory (DFT) calculation, indicated that intermolecular charge transfer (ICT) progress was hindered when the probe reacted with hydrazine, resulting in fluorescent quenching. In addition, the probe could selectively bind to MCF-7 breast cancer cells with excellent biocompatibility. The in vivo and ex vivo imaging studies demonstrated that the probe could rapidly visualize hydrazine with high contrast in MCF-7 xenograft tumors. Therefore, this probe can serve as a potential tool to robustly monitor hydrazine levels in vivo.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/diagnóstico por imagem , Feminino , Corantes Fluorescentes/química , Humanos , Hidrazinas/química , Espectrometria de Fluorescência
13.
Lasers Med Sci ; 37(8): 3291-3296, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36044123

RESUMO

BACKGROUND: Several studies have investigated the role of laser ablation of anal fistulae in the European setting. However, long-term follow-up results following laser fistula ablations are not widely investigated and no study was performed in the Asia-Pacific, a region with a distinctive prevalence of tuberculosis. The primary objective of this study is to report a single-centre experience with laser ablation of anal fistulae in Malaysia over a period of 6 years. METHOD: This was a retrospective observational study assessing the outcomes following 70 laser ablations of anal fistulae from February 2014 till December 2019. All cases were assessed using endoanal ultrasound. The laser ablation procedures were performed using laser systems and fibres from Endoteq Medizinische Laser GmBH, Germany, and Biolitec AG, Jena, Germany. Laser fibres were introduced into the fistula tract and laser energy was emitted radially in continuous mode when activated during the procedure. Pre-defined post-procedural outcomes (primary healing, healing failure or recurrence) were recorded as either present or absent during subsequent follow-up appointments and the data was analysed. RESULTS: Over a median follow-up period of 10 months, primary healing was reported following 42 procedures (60.0%). Healing failure was reported following 28 procedures (40.0%) whilst recurrence was seen after 16 procedures (22.86%). No new cases of incontinence were reported following the procedure. CONCLUSION: The reported primary healing rate following laser ablation of anal fistulae in this study appears consistent with existing literature published by other international centres. The most apparent clinical advantage of this procedure is sphincter-function preservation. However, the primary healing rate after isolated laser fistula ablation is still suboptimal. Judicious patient selection and application in anal fistulae with suitable characteristics could potentially improve the post-procedural outcomes.


Assuntos
Terapia a Laser , Fístula Retal , Canal Anal/cirurgia , Hospitais de Ensino , Humanos , Terapia a Laser/métodos , Malásia/epidemiologia , Fístula Retal/cirurgia , Recidiva , Resultado do Tratamento
14.
Heart Lung Circ ; 31(9): e123-e125, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690563

RESUMO

Endoscopic venous harvest (EVH) has become widely adopted in routine elective coronary artery bypass graft operations given it reduces surgical-site infections and improves wound cosmesis. The conventional EVH involves a 'stab and grab' incision at the inguinal crease, which is a hard-to-reach area for routine wound care. This paper describes the steps of the uniportal EVH, which transects the venous conduit, omitting the need for a stab incision at the groin.


Assuntos
Veia Safena , Coleta de Tecidos e Órgãos , Endoscopia , Técnicas Hemostáticas , Humanos , Procedimentos Cirúrgicos Vasculares
15.
Int J Cancer ; 151(3): 450-462, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35478458

RESUMO

Early detection and complete resection of oral squamous cell carcinoma (OSCC) are crucial to improving patient survival and prognosis. However, specifically targeted imaging probes for OSCC detection are limited. Our study aimed to synthesize a novel near-infrared fluorescence (NIRF) probe for precision detection and fluorescence image-guided surgery in OSCC. Bioinformatics data indicated that glucose transporter 1 (GLUT1) is highly expressed in patients with OSCC. We demonstrated high and specific GLUT1 expression upon immunohistochemical staining of samples from 20 patients with OSCC. The specific expression of GLUT1 was further validated in both human OSCC cell lines and OSCC tumor xenografts. Based on these findings, the GLUT1 inhibitor WZB117 was utilized to synthesize a novel NIRF imaging probe, WZB117-IR820. The fluorescence molecular imaging data revealed that WZB117-IR820 could specifically bind to the tumor areas in an orthotopic OSCC mouse model after intravenous injection and could be further applied for precision fluorescence image-guided surgery with no residual tumor in the orthotopic CAL27-fLUC mouse tumor model. For further clinical translational application in patients with OSCC, precise delineation of OSCC tumor areas was achieved after topical application of the WZB117-IR820 imaging probe and was validated by histopathological and immunohistochemical analyses. In conclusion, we synthesized a novel fluorescent imaging probe, WZB117-IR820, which has potential clinical applications for early detection and fluorescence image-guided surgery in OSCC with no observable toxicity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Cirurgia Assistida por Computador , Animais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Transportador de Glucose Tipo 1 , Humanos , Camundongos , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/patologia , Neoplasias Bucais/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121031, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189489

RESUMO

Nitroreductase (NTR) detection in tumor is critical because NTR level is correlated with hypoxia degree and cancer prognosis. With the feature of high sensitivity and selectivity, fluorescence organic probes for NTR detection exhibited a promising future for tumor hypoxia detection. However, the discovery and design of such probes have been impeded due to the lack of the understanding of spatial match and mismatch of these probes with NTR. Here, we have developed two new nitrophenyl-functionalized trimethincyanine (Cy3) probes with para- or meta- positions of nitro-group in phenyl ring. Para-nitrophenyl substituted Cy3 (pNP-Cy3) exhibited a remarkable response to NTR (20-fold fluorescence enhancement) with good selectivity and sensitivity. Experimental and theoretical analysis verified that the substituent position of nitro group on phenyl ring of dyes altered the spatial arrangement of nitro-substituent group, thereby modulated the spatial match and mismatch between Cy3 dyes and binding domain of NTR, and consequently led to a different fluorescent turn-on response. In tumor-bearing mice model, hypoxia status of A549 xenografted tumor of mice was successfully delineated by using pNP-Cy3. These results may provide a clue for designing new cyanine-derived NTR probe to monitor NTR-overexpressed hypoxia cancer cells.


Assuntos
Neoplasias , Nitrorredutases , Hipóxia Tumoral , Animais , Corantes Fluorescentes/química , Camundongos , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Nitrorredutases/metabolismo
17.
J Biol Chem ; 297(2): 100933, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216622

RESUMO

Precursor messenger RNA (pre-mRNA) splicing is critical for cell growth and development, and errors in RNA splicing frequently cause cellular dysfunction, abnormal gene expression, and a variety of human diseases. However, there is currently a lack of reliable systems to noninvasively monitor the mRNA splicing efficiency in cells and animals. Here, we described the design of a genetically engineered ratiometric dual luciferase reporter to continuously quantify the changes in mRNA splice variants in vivo. This reporter system is encoded within a single polypeptide but on separate exons, thus generating two distinct luciferase signals derived from spliced and unspliced mRNAs. With this reporter, the two kinds of luciferase in the same individual can minimize the influence of indirect factors on splicing, and the ratio of these two luciferase intensities represents the dynamic splicing efficiency of pre-mRNA. Our study offers a convenient and robust tool for the screening and identification of small molecules or trans-acting factors that affect the efficiency of specific splicing reactions.


Assuntos
Luciferases , Precursores de RNA , Splicing de RNA , Processamento Alternativo , Éxons
18.
Bioorg Med Chem ; 40: 116185, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965842

RESUMO

Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
19.
Bioconjug Chem ; 32(1): 161-171, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33337872

RESUMO

Early identification and treatment of breast cancer is very important for breast conserving therapy and to improve the prognosis and survival rates of patients. Multifunctional nanotheranostic agents are of particular importance in the field of precise nanomedicine, since they can augment the visualization and treatment of cancer. We developed a novel Bi2S3 nanoparticle coated with a hyaluronic acid (HA)-modified tantalum oxide (TaOx) nanoshell (Bi2S3@TaOx-HA). The as-prepared core/shell nanoparticles exhibited a high Bi2S3 nanoparticle loading efficiency of (67 wt %). The TaOx nanoshell exhibited excellent biocompatibility and computed tomography imaging capacity, and the Bi2S3 nanoparticles exhibited an excellent photothermal transducing performance and computed tomography (CT) and photoacoustic imaging capacity. As a result of these merits, the Bi2S3@TaOx core-shell nanoparticles can act as a theranostic agent for CT/photoacoustically monitored enhanced photothermal therapy. These findings will evoke new interest in future cancer therapeutic strategies based on biocompatible functional nanomaterials.


Assuntos
Bismuto/química , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Óxidos/química , Medicina de Precisão , Sulfetos/química , Tantálio/química , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Feminino , Humanos , Técnicas Fotoacústicas , Fototerapia/métodos , Tomografia Computadorizada por Raios X
20.
Anal Chem ; 92(23): 15565-15572, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201673

RESUMO

Pyroptotic cell death is a phenomenon that runs through all life activities and plays an important role in physiological and pathological processes of the body's metabolism. It is of big biological significance to understand the phenomenon and nature of cell pyroptosis. In the process of cell pyroptosis, the pore-forming effector gasdermin D (GSDMD) is cleaved to form oligomers, which are inserted into the cell membrane, causing rapid cell death. However, the effective cell death induced by GSDMD complicates our ability to understand the behavior of pyroptosis. In this work, we performed molecular mutagenesis to develop a genetically encoded pyroptotic reporter, where a secreted Gaussia luciferase (Gluc) was strategically placed in the p30-p20 tolerated junction of GSDMD to support natural pyrophosphorylation and promote live imaging of cell pyroptosis. In addition, we demonstrated that this fused Gluc-GSDMD reporter executed inflammatory body-dependent pyroptosis in response to extracellular stimuli, and that the lysed p30-GSDMD can be secreted out of the cell and can be detected in the culture medium and animal blood. Therefore, our study provides a valuable tool that not only noninvasive and real-time monitoring of cell pyroptosis, but also affords a high-throughput functional screening of pyroptosis-targeted compounds in cultured cells and animal models.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/sangue , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Animais , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Luciferases/genética , Imagem Molecular , Mutagênese , Proteínas de Ligação a Fosfato/genética , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA