Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057782

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.

2.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834920

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Células A549 , Sistemas CRISPR-Cas , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteína rhoB de Ligação ao GTP/genética
3.
Antiviral Res ; 183: 104935, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949636

RESUMO

Zika virus (ZIKV) outbreaks have been reported worldwide, including a recent occurrence in Brazil where it spread rapidly, and an association with increased cases of microcephaly was observed in addition to neurological issues such as GBS that were reported during previous outbreaks. Following infection of neuronal tissues, ZIKV can cause inflammation, which may lead to neuronal abnormalities, including seizures and paralysis. Therefore, a drug containing both anti-viral and immunosuppressive properties would be of great importance in combating ZIKV related neurological abnormalities. Castanospermine (CST) is potentially a right candidate drug as it reduced viral load and brain inflammation with the resulting appearance of delayed neuronal disorders, including seizures and paralysis in an Ifnar1-/- mouse.


Assuntos
Antivirais/uso terapêutico , Indolizinas/uso terapêutico , Inflamação/tratamento farmacológico , Convulsões/tratamento farmacológico , Convulsões/virologia , Infecção por Zika virus/complicações , Infecção por Zika virus/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Glioblastoma , Humanos , Imunossupressores/uso terapêutico , Inflamação/virologia , Masculino , Camundongos , Convulsões/imunologia , Células Vero , Carga Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos
4.
Front Microbiol ; 11: 598203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424801

RESUMO

The 2015 to 2016 outbreak of Zika virus (ZIKV) infections in the Americas coincided with a dramatic increase in neurodevelopmental abnormalities, including fetal microcephaly, in newborns born to infected women. In this study, we observed mitochondrial fragmentation and disrupted mitochondrial membrane potential after 24 h of ZIKV infection in human neural stem cells and the SNB-19 glioblastoma cell line. The severity of these changes correlated with the amount of ZIKV proteins expressed in infected cells. ZIKV infection also decreased the levels of mitofusin 2, which modulates mitochondria fusion. Mitochondrial division inhibitor 1 (Mdivi-1), a small molecule inhibiting mitochondria fission, ameliorated mitochondria disruptions and reduced cell death in ZIKV-infected cells. Collectively, this study suggests that abnormal mitochondrial fragmentation contributes to ZIKV-induced neuronal cell death; rebalancing mitochondrial dynamics of fission-fusion could be a therapeutic strategy for drug development to treat ZIKV-mediated neuronal apoptosis.

5.
Eur J Med Chem ; 187: 111925, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838328

RESUMO

The Zika endemic established by imported and local transmission is of significant concern and effective anti-ZIKV drugs remain an urgent unmet need. As andrographolide was identified to be an inhibitor of DENV and CHIKV and the importance of quinoline structure against infectious diseases was considered, we are interested in studying its andrographolide derivatives with quinoline moiety against Zika virus infection. In addition to screening eight in-house derivatives of andrographolide, sixteen new derivatives were designed, synthesized and tested against Zika virus infection. Among these compounds, two most potent anti-Zika compounds of 19-acetylated 14α-(5',7'-dichloro-8'-quinolyloxy) derivative 17b and 14ß-(8'-quinolyloxy)-3,19- diol derivative 3 with the highest selectivity were discovered. The SAR analysis indicates that rational and optimal combined modification/s at 3-, 14-, or 19-positions can make derivatives less toxic and more potent against Zika infection, and both of 3 and 17b are suitable as leads for designing new generation of andrographolide derivatives with quinoline or its structure- and property-related moieties against Zika virus and other arboviruses.


Assuntos
Antivirais/farmacologia , Diterpenos/síntese química , Diterpenos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Diterpenos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Assay Drug Dev Technol ; 17(3): 128-139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958701

RESUMO

Zika virus has recently emerged as a worldwide pathogen and public health burden due to its rapid spread and identification as a causative agent for multiple neurological defects, including congenital microcephaly. While there has been a flurry of recent research to address this emerging pathogen, there are currently no approved drug treatments for ZIKV infection. The gold standard for testing antiviral activity is to quantify infectious virion production. However, current infectious viral production assays, such as the plaque-forming or focus-forming unit assay, are tedious and labor intensive with a low-screening throughput. To facilitate drug development, we developed a Zika viral titration assay using an automated imaging system and an image analysis algorithm for viral colony quantification. This assay retained the principle of the classical virus titer assay, while improving workflow and offering higher screening throughput. In addition, this assay can be broadly adapted to quantification of other viruses.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Carga Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Algoritmos , Antivirais/química , Automação , Humanos , Testes de Sensibilidade Microbiana , Imagem Óptica , Células Tumorais Cultivadas
7.
Stem Cell Reports ; 11(2): 348-362, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29983385

RESUMO

Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly activates macrophage migration inhibitory factor (MIF) secretion and decreases macrophage migration. Neutralization of MIF leads to improved migratory ability of DENV-infected macrophages. In contrast, ZIKV-infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines. Mechanistically, ZIKV disrupts the nuclear factor κB (NF-κB)-MIF positive feedback loop by inhibiting the NF-κB signaling pathway. Our results demonstrate the utility of hPSC-derived macrophages in infectious disease modeling and suggest that the distinct impact of ZIKV and DENV on macrophage immune response may underlie different pathogenesis of Zika and dengue diseases.


Assuntos
Diferenciação Celular , Vírus da Dengue/imunologia , Dengue/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Células-Tronco Pluripotentes/citologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Biomarcadores , Movimento Celular/imunologia , Células Cultivadas , Citocinas/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunofenotipagem , Macrófagos/metabolismo , Macrófagos/virologia , Células-Tronco Pluripotentes/metabolismo , Replicação Viral/imunologia
8.
Nucleic Acids Res ; 44(18): 8610-8620, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27580721

RESUMO

Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.


Assuntos
Córtex Cerebral/citologia , Perfilação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Infecção por Zika virus/genética , Zika virus/fisiologia , Morte Celular/genética , Linhagem Celular , Reparo do DNA/genética , Replicação do DNA/genética , Vírus da Dengue/fisiologia , Humanos , Transdução de Sinais/genética , Especificidade da Espécie , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Infecção por Zika virus/virologia
9.
Stem Cell Reports ; 7(3): 341-354, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546535

RESUMO

The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology, partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study, we differentiated human pluripotent stem cells (hPSCs) into hepatocytes, one of the target cells of DENV, to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore, DENV infection activated the NF-κB pathway, which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions.


Assuntos
Diferenciação Celular , Vírus da Dengue/fisiologia , Hepatócitos/citologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Células-Tronco Pluripotentes/citologia , Apoptose , Citocinas/genética , Citocinas/metabolismo , Dengue/imunologia , Dengue/metabolismo , Dengue/virologia , Fator V/genética , Fator V/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Interferons/farmacologia , NF-kappa B/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Transdução de Sinais , Receptor Tirosina Quinase Axl
10.
J Virol ; 90(8): 4174-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865724

RESUMO

UNLABELLED: Individuals chronically infected with hepatitis C virus (HCV) commonly exhibit hepatic intracellular lipid accumulation, termed steatosis. HCV infection perturbs host lipid metabolism through both cellular and virus-induced mechanisms, with the viral core protein playing an important role in steatosis development. We have recently identified a liver protein, the cell death-inducing DFFA-like effector B (CIDEB), as an HCV entry host dependence factor that is downregulated by HCV infection in a cell culture model. In this study, we investigated the biological significance and molecular mechanism of this downregulation. HCV infection in a mouse model downregulated CIDEB in the liver tissue, and knockout of the CIDEB gene in a hepatoma cell line results in multiple aspects of lipid dysregulation that can contribute to hepatic steatosis, including reduced triglyceride secretion, lower lipidation of very-low-density lipoproteins, and increased lipid droplet (LD) stability. The potential link between CIDEB downregulation and steatosis is further supported by the requirement of the HCV core and its LD localization for CIDEB downregulation, which utilize a proteolytic cleavage event that is independent of the cellular proteasomal degradation of CIDEB. IMPORTANCE: Our data demonstrate that HCV infection of human hepatocytesin vitroandin vivoresults in CIDEB downregulation via a proteolytic cleavage event. Reduction of CIDEB protein levels by HCV or gene editing, in turn, leads to multiple aspects of lipid dysregulation, including LD stabilization. Consequently, CIDEB downregulation may contribute to HCV-induced hepatic steatosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fígado Gorduroso/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Fígado Gorduroso/virologia , Hepatite C/virologia , Humanos , Lipídeos , Camundongos , Proteólise , Ubiquitina/metabolismo
11.
J Biol Chem ; 289(33): 22798-22814, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990949

RESUMO

DHX9 is an ATP-dependent DEXH box helicase with a multitude of cellular functions. Its ability to unwind both DNA and RNA, as well as aberrant, noncanonical polynucleotide structures, has implicated it in transcriptional and translational regulation, DNA replication and repair, and maintenance of genome stability. We report that loss of DHX9 in primary human fibroblasts results in premature senescence, a state of irreversible growth arrest. This is accompanied by morphological defects, elevation of senescence-associated ß-galactosidase levels, and changes in gene expression closely resembling those encountered during replicative (telomere-dependent) senescence. Activation of the p53 signaling pathway was found to be essential to this process. ChIP analysis and investigation of nascent DNA levels revealed that DHX9 is associated with origins of replication and that its suppression leads to a reduction of DNA replication. Our results demonstrate an essential role of DHX9 in DNA replication and normal cell cycle progression.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Senescência Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Replicação do DNA/fisiologia , Fibroblastos/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , RNA Helicases DEAD-box/genética , Diploide , Fibroblastos/citologia , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteína Supressora de Tumor p53/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
PLoS One ; 8(7): e67982, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844141

RESUMO

Our previous studies demonstrated that the cell culture-grown hepatitis C virus of genotype 2a (HCVcc) uses apolipoprotein E (apoE) to mediate its attachment to the surface of human hepatoma Huh-7.5 cells. ApoE mediates HCV attachment by binding to the cell surface heparan sulfate (HS) which is covalently attached to the core proteins of proteoglycans (HSPGs). In the present study, we further determined the physiological importance of apoE and HSPGs in the HCV attachment using a clinical HCV of genotype 1b (HCV1b) obtained from hepatitis C patients and human embryonic stem cell-differentiated hepatocyte-like cells (DHHs). DHHs were found to resemble primary human hepatocytes. Similar to HCVcc, HCV1b was found to attach to the surface of DHHs by the apoE-mediated binding to the cell surface HSPGs. The apoE-specific monoclonal antibody, purified HSPGs, and heparin were all able to efficiently block HCV1b attachment to DHHs. Similarly, the removal of heparan sulfate from cell surface by treatment with heparinase suppressed HCV1b attachment to DHHs. More significantly, HCV1b attachment was potently inhibited by a synthetic peptide derived from the apoE receptor-binding region as well as by an HSPG-binding peptide. Likewise, the HSPG-binding peptide prevented apoE from binding to heparin in a dose-dependent manner, as determined by an in vitro heparin pull-down assay. Collectively, these findings demonstrate that HSPGs serve as major HCV attachment receptors on the surface of human hepatocytes to which the apoE protein ligand on the HCV envelope binds.


Assuntos
Apolipoproteínas E/metabolismo , Hepacivirus/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Hepatócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Apolipoproteínas E/imunologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genótipo , Células HEK293 , Hepacivirus/genética , Hepacivirus/fisiologia , Proteoglicanas de Heparan Sulfato/farmacologia , Heparina/farmacologia , Heparina Liase/metabolismo , Heparina Liase/farmacologia , Hepatite C/virologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
13.
Blood ; 121(17): 3402-12, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23440244

RESUMO

ABT-737 is a promising chemotherapeutic agent that promotes apoptosis by acting as a selective BH3 mimetic to neutralize Bcl-2-like family members. One shortcoming with its use is that Mcl-1, a member of the Bcl-2 family, is poorly inhibited by ABT-737 and thus is a major cause of resistance. We performed a short hairpin RNA (shRNA)-based drop-out screen to identify novel genes and pathways that could reverse resistance to ABT-737 treatment in Eµ-myc/Bcl-2 lymphoma cells engineered to rely on endogenous Mcl-1 for survival. Several drug-sensitive shRNAs were identified that were selectively depleted in the presence of ABT-737. Of these, 2 independent shRNAs targeting the RNA/DNA helicase Dhx9 were found to sensitize lymphomas to ABT-737 to an extent comparable to control Mcl-1 shRNAs. Although Dhx9 suppression sensitized both mouse and human cells to ABT-737 treatment, it did so without altering MCL-1 levels. Rather, loss of Dhx9 appeared to activate a p53-dependent apoptotic program, through aggravation of replicative stress, which was found to be both necessary and sufficient for the ABT-737-shDhx9 synthetic lethal relationship.


Assuntos
Compostos de Bifenilo/farmacologia , RNA Helicases DEAD-box/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma/genética , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Sulfonamidas/farmacologia , Animais , Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Genes Modificadores , Humanos , Linfoma/patologia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
J Virol ; 86(13): 7256-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532692

RESUMO

Viruses are known to use virally encoded envelope proteins for cell attachment, which is the very first step of virus infection. In the present study, we have obtained substantial evidence demonstrating that hepatitis C virus (HCV) uses the cellular protein apolipoprotein E (apoE) for its attachment to cells. An apoE-specific monoclonal antibody was able to efficiently block HCV attachment to the hepatoma cell line Huh-7.5 as well as primary human hepatocytes. After HCV bound to cells, however, anti-apoE antibody was unable to inhibit virus infection. Conversely, the HCV E2-specific monoclonal antibody CBH5 did not affect HCV attachment but potently inhibited HCV entry. Similarly, small interfering RNA-mediated knockdown of the key HCV receptor/coreceptor molecules CD81, claudin-1, low-density lipoprotein receptor (LDLr), occludin, and SR-BI did not affect HCV attachment but efficiently suppressed HCV infection, suggesting their important roles in HCV infection at postattachment steps. Strikingly, removal of heparan sulfate from the cell surface by treatment with heparinase blocked HCV attachment. Likewise, substitutions of the positively charged amino acids with neutral or negatively charged residues in the receptor-binding region of apoE resulted in a reduction of apoE-mediating HCV infection. More importantly, mutations of the arginine and lysine to alanine or glutamic acid in the receptor-binding region ablated the heparin-binding activity of apoE, as determined by an in vitro heparin pulldown assay. HCV attachment could also be inhibited by a synthetic peptide derived from the apoE receptor-binding region. Collectively, these findings demonstrate that apoE mediates HCV attachment through specific interactions with cell surface heparan sulfate.


Assuntos
Apolipoproteínas E/metabolismo , Hepacivirus/fisiologia , Heparitina Sulfato/metabolismo , Hepatócitos/virologia , Ligação Viral , Apolipoproteínas E/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo
15.
PLoS Pathog ; 6(9): e1001118, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886100

RESUMO

Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCV's susceptibility to CsA and its derivatives that are currently in clinical trials.


Assuntos
Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Farmacorresistência Viral , Regulação Viral da Expressão Gênica , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Dicroísmo Circular , Ciclofilina A/genética , Ensaio de Imunoadsorção Enzimática , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , Técnicas Imunoenzimáticas , Imunossupressores/farmacologia , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , RNA Viral/genética , Replicon/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
16.
Nucleic Acids Res ; 37(19): 6587-99, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19729514

RESUMO

Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have been reported to trigger IFN activation. The consensus is that intracellularly expressed short-hairpin RNAs (shRNAs) are less prone to IFN activation because they are not detected by the cell-surface receptors. In particular, lentiviral vector-mediated transduction of shRNAs has been reported to avoid IFN response. Here we identify a shRNA that potently activates the IFN pathway in human cells in a sequence- and 5'-triphosphate-dependent manner. In addition to suppressing its intended mRNA target, expression of the shRNA results in dimerization of interferon regulatory factor-3, activation of IFN promoters and secretion of biologically active IFNs into the extracellular medium. Delivery by lentiviral vector transduction did not avoid IFN activation by this and another, unrelated shRNA. We also demonstrated that retinoic-acid-inducible gene I, and not melanoma differentiation associated gene 5 or toll-like receptor 3, is the cytoplasmic sensor for intracellularly expressed shRNAs that trigger IFN activation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interferons/metabolismo , Lentivirus/genética , RNA não Traduzido/metabolismo , Linhagem Celular , Ciclofilinas/antagonistas & inibidores , Proteína DEAD-box 58 , Vetores Genéticos , Humanos , Regiões Promotoras Genéticas , Receptores Imunológicos , Transdução Genética
17.
Clin Sci (Lond) ; 117(2): 49-65, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19515018

RESUMO

HCV (hepatitis C virus) infects nearly 3% of the population worldwide and has emerged as a major causative agent of liver disease, resulting in acute and chronic infections that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatitis C represents the leading cause of liver transplantation in the United States and Europe. A positive-strand RNA virus of the Flaviviridae family, HCV contains a single-stranded RNA genome of approx. 9600 nucleotides. The genome RNA serves as both mRNA for translation of viral proteins and the template for RNA replication. Cis-acting RNA elements within the genome regulate RNA replication by forming secondary structures that interact with each other and trans-acting factors. Although structural proteins are clearly dispensable for RNA replication, recent evidence points to an important role of several non-structural proteins in particle assembly and release, turning their designation on its head. HCV enters host cells through receptor-mediated endocytosis, and the process requires the co-ordination of multiple cellular receptors and co-receptors. RNA replication takes place at specialized intracellular membrane structures called 'membranous webs' or 'membrane-associated foci', whereas viral assembly probably occurs on lipid droplets and endoplasmic reticulum. Liver inflammation plays a central role in the liver damage seen in hepatitis C, but many HCV proteins also directly contribute to HCV pathogenesis. In the present review, the molecular and cellular aspects of the HCV life cycle and the role of viral proteins in pathological liver conditions caused by HCV infection are described.


Assuntos
Hepacivirus/genética , Hepatite C/genética , Doença Aguda , Genoma Viral , Hepatite C/virologia , Hepatite C Crônica , Humanos , Estresse Oxidativo/fisiologia , RNA Viral/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/fisiologia
18.
J Virol Methods ; 154(1-2): 216-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18782589

RESUMO

A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. RNAi is a powerful tool to elucidate gene functions. In this study three RNAi approaches (transient transfection, stable transduction and inducible RNAi) were assessed to validate human RNA helicase A (RHA) as an essential factor in hepatitis C virus (HCV) replication. It indicated that RHA transient knockdown by synthetic siRNA had no effect on HCV replication, while RHA stable knockdown via lentivector transduction caused cell lethality. The involvement of RHA in HCV replication was verified by an RNAi inducible system that, on the one hand, maintained long-term gene silencing, but on the other hand, alleviated siRNA toxicity during the essential gene silencing. A 21-day follow-up of the response of HCV replication to the presence and absence of RNAi indicated that RHA is a cellular factor involved in the HCV replication process.


Assuntos
RNA Helicases DEAD-box/metabolismo , Inativação Gênica , Hepacivirus/fisiologia , Proteínas de Neoplasias/metabolismo , Replicação Viral , Linhagem Celular , Sobrevivência Celular , RNA Helicases DEAD-box/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
Exp Cell Res ; 313(17): 3743-54, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17822697

RESUMO

RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role.


Assuntos
Nucléolo Celular/enzimologia , Hepacivirus/fisiologia , RNA Helicases/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Diclororribofuranosilbenzimidazol/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Sinais de Localização Nuclear/análise , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
J Virol ; 78(23): 12829-37, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15542635

RESUMO

Ribozymes are small, catalytic RNA molecules that can be engineered to down-regulate gene expression by cleaving specific mRNA. Here we report the selection of hairpin ribozymes that inhibit human immunodeficiency virus (HIV) replication from a combinatorial ribozyme library. We identified a total of 17 effective ribozymes, each capable of inhibiting HIV infection of human CD4(+) cells. These ribozymes target diverse steps of the viral replication cycle, ranging from entry to transcription. One ribozyme suppressed HIV integration and transcription by inhibiting the expression of the Ku80 subunit of the DNA-activated protein kinase. Another ribozyme specifically inhibited long terminal repeat transactivation, while two additional ones blocked a step that can be bypassed by vesicular stomatitis virus G-protein pseudotyping. The function of Ku80 in HIV replication and its mechanism of action were further confirmed using short interfering RNA. Identification of the gene targets of these and other selected ribozymes may reveal novel therapeutic targets for combating HIV infection.


Assuntos
HIV/fisiologia , RNA Catalítico/farmacologia , Replicação Viral , Apoptose , Linfócitos T CD4-Positivos/virologia , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/fisiologia , Genoma Viral , HIV/genética , Humanos , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/fisiologia , Subunidades Proteicas , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA