Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1272274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901105

RESUMO

In recent years, the increased demand for agri-food products to feed livestock species has stimulated research to identify novel solutions for the valorization of natural waste, according to the modern concept of a circular economy. Numerous studies have shown the use of plant-derived and agro-industrial co-products that are sources of bioactive molecules for preparing animal feeds. Supplementation with co-products derived from the extraction of olive oil (i.e., olive pomace, olive mill wastewater, olive cake and olive leaf) in diet has been widely considered in recent decades, because these wastes are produced in high quantity and their re-use represents an innovative economic and environmental strategy. Olive oil co-products are characterized by various bioactive molecules such as polyphenols, carbohydrates, proteins, and lipids. Among them, polyphenols are the nutraceuticals most studied, showing to promote health effects in both humans and animals. Olive oil co-products and their phenolic extracts have shown many beneficial and promising effects when added to the diets of monogastric animals, by improving performance parameters and maintaining the oxidative status of meat and derived products. This review provides an update on the use of olive co-products in monogastric animal (swine, poultry and rabbit) diets and their effects on the productive performance, meat quality characteristics and gut health status.

2.
Front Vet Sci ; 9: 942253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958301

RESUMO

Weaning often induces oxidative stress and inflammatory response in piglets. This study investigated the effects of dietary licorice flavonoids powder (LFP) supplementation on antioxidant capacity and immunity in weaned piglets. Notably, 96 Landrace × Yorkshire × Duroc (DLY) weaned piglets were randomly allocated to four treatments with 6 replicates (4 animals per replicate) and fed with diet supplementation with 0, 50, 150, and 250 mg/kg LFP, respectively. The trial lasted for 5 weeks. The results showed that dietary LFP supplementation effectively increased the liver index (P < 0.05). In addition, dietary LFP supplementation reduced serum aspartate aminotransferase activity (P < 0.01). Piglets fed with 50 mg/kg LFP decreased total cholesterol and HDL-C content in serum (P < 0.05) and increased serum alkaline phosphatase activity (P < 0.01). Similarly, supplementation with 150 mg/kg LFP elevated the activity of total antioxidant capability (T-AOC) in serum (P < 0.01) and dietary with 150 and 250 mg/kg LFP increased T-AOC activity in spleen (P < 0.01). Moreover, dietary with 150 mg/kg LFP addition enhanced (P < 0.05) the serum IgG content of piglets. Additionally, compared with the control group, dietary 250 mg/kg LFP supplementation upregulated (P < 0.05) the mRNA abundance of Interleukin (IL)-1ß and monocyte chemoattractant protein 1 (MCP-1) in the spleen. Meanwhile, dietary 150 and 250 mg/kg LFP supplementation downregulated (P < 0.05) mRNA abundance of IL-10, and MCP-1 and 250 mg/kg LFP upregulated (P < 0.05) the expression of intercellular adhesion molecule 1 (ICAM-1), IL-1ß, IL-6, and tumor necrosis factor α (TNF-α) in the thymus. In conclusion, LFP supplementation improved the immune function of piglets by regulating the activity of serum biochemical enzymes, improving the antioxidant capacity, and alleviating inflammation of immune organs. This study indicated that LFP is potential alternative protection against early weaned stress in piglets.

3.
Front Immunol ; 12: 748497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745120

RESUMO

Background: Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods: IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results: The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion: Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Fosfolipase C gama/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais/fisiologia , Triptofano/farmacologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Antígenos de Bactérias/análise , Linhagem Celular , Escherichia coli Enterotoxigênica/química , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/análise , Proteínas de Fímbrias/análise , Inflamação , Naftalenos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Suínos
4.
Oxid Med Cell Longev ; 2021: 5550196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336098

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) signaling plays pivotal roles in cell growth and diseases. However, it remains mechanistically unclear about how to maintain mTORC1 activity during mammary glands development. Here we showed that mammary glands suffered from aggravated oxidative stress as pregnancy advanced and was accompanied by an increase in H2O2 levels, while the consumption for methionine and S-adenosylmethionine (SAM) rather than S-adenosylhomocysteine (SAH) were promoted in vivo. Likewise, H2O2 promoted SAM synthesis and reduced SAM utilization for methylation depending on H2O2 levels and treatment time in vitro. H2O2 inhibited phosphorylation of S6 kinase Thr 389 (p-S6K1 (T389)), 4E-BP1 Thr 37/46 and ULK1 Ser 757, the downstream of mTORC1, in mammary epithelial cells. However, methionine and SAM were shown to activate mTORC1 under H2O2-exposed condition. Moreover, this effect was not disabled by SGI-1027 which inhibits SAM transmethylation. In conclusion, methionine appeared to protect mammary cells against oxidative stress through producing SAM to maintain mTORC1 signaling activity.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , S-Adenosilmetionina/metabolismo , Animais , Feminino , Humanos , Metionina/farmacologia , Transdução de Sinais
5.
J Therm Biol ; 97: 102874, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863438

RESUMO

With the globe warming, heat stress (HS) has frequently affected animal production. Selenium (Se) is an essential trace element for animals and exerts most of its biological functions through selenoproteins. We previously demonstrated that the damage to C2C12 cells by HS accompanied with the response of selenoprotein encoding genes and proteins. The objective of this study was to investigate whether selenium supplementation (sodium selenite, SS and selenomethionine, SeMet) could alleviate the negative effect of heat stress on the differentiation of C2C12 cells, and interpret the potential corresponding selenoproteins response. The differentiated cells were cultured for 4 and 8 days under different condition: at 37 °C, 41.5 °C and 41.5 °C with 0.5 µmol Se/L SS or SeMet, and the HSP70, cell apoptosis, selenoproteins and cell differentiation-related gene or protein were detected. The result showed that HS up-regulated (P < 0.05) mRNA and protein levels of HSP70 and gene expression of AMPKα1 and AMPKα2, and down-regulated (P < 0.05) mRNA or protein levels of MYOGENIN and MYOD. Meanwhile, up to 15 and 17 selenoprotein genes expression were significantly changed response to 4-and 8-days HS challenge, respectively. Relative to the HS group, SS and SeMet supplementation down-regulated the mRNA and protein abundance of HSP70 to different degrees, and partly recovered (P < 0.05) the mRNA or protein abundance of MYOGENIN and MYOD at 4th and 8th day. Especially, 16 and 10 selenoprotein genes expression in cells affected by HS were altered by SS and SeMet supplementation, respectively. Both SS and SeMet supplementation modestly increased (P < 0.05) protein levels of GPX1 and SELENON in cells under HS. In summary, Se supplementation partly alleviated the negative impact of HS on myogenic differentiation of C2C12 cells and the process may associate with the alternation of selenoprotein expression pattern, and SeMet exhibits better effect than SS.


Assuntos
Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta/efeitos adversos , Substâncias Protetoras/farmacologia , Selenometionina/farmacologia , Selenito de Sódio/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Genoma , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo
6.
J Cell Physiol ; 236(4): 3015-3032, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960454

RESUMO

Glucagon-like peptide-2 (GLP-2), an intestinotrophic hormone, has drawn considerable attention worldwide due to its potential to promote intestinal development. We investigated the effects and mechanisms of GLP-2 against lipopolysaccharide (LPS)-induced intestinal inflammation and injury both in vitro and in vivo. Forty healthy piglets weaned at the age of 28 days with similar body weight (BW) were assigned to four in vivo treatments with ten piglets each: (i) nonchallenged control; (ii) LPS-challenged control; (iii) LPS + low dose GLP-2; and (iv) LPS + high dose GLP-2. Piglets were subcutaneously injected with phosphate-buffered saline supplemented with GLP-2 at doses of 0, 0, 2, and 10 nmol/kg BW per day for seven consecutive days. The piglets were challenged with an intraperitoneal injection with 100 µg/kg LPS on day 14 to induce intestinal damage. After that, the gene and protein expression levels of representative tight junction proteins and myosin light-chain kinase (MLCK)/phosphorylated myosin light chain (pMLC), as well as proinflammatory cytokine levels were determined using quantitative reverse transcription polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay methods. A high dose of GLP-2 pretreatment increased intestinal permeability by downregulating and redistributing tight junction proteins (p < .05), for example, zona occluden-1 (ZO-1) and occludin. GLP-2 decreased the transcription of proinflammatory cytokines genes including interleukin-1ß (IL-1ß), IL-6, IL-8, and tumor necrosis factor-α in small intestines (p < .05). GLP-2 prevented the LPS-induced increase in the expression of MLCK dose-dependently and the increase in pMLC levels in the duodenum, jejunum, and ileum. To assess further the protective effect of GLP-2 on LPS-induced intestinal barrier injury after weaning and its possible mechanism, an in vitro intestinal epithelial barrier model was established with IPEC-J2 monolayers and treated with 100 µg/ml LPS with or without 1 × 10-8 mol/L GLP-2 pretreatment. The in vitro analysis included control, LPS, and GLP-2 + LPS treatments. GLP-2 treatment alleviated the destructive effect of LPS on barrier permeability by restoring the expression and ultrastructure of ZO-1 and occludin (p < .05). In addition, GLP-2 reversed the LPS-induced MLCK hyperexpression and pMLC hyperphosphorylation (p < .05). Taken together, our findings revealed a mechanism by which GLP-2 alleviated LPS-challenged intestinal barrier injury and inflammation in weaned piglets and IPEC-J2 cells via the MLCK/pMLC signaling pathway.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/farmacologia , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Ácido Láctico/sangue , Lipopolissacarídeos/sangue , Modelos Biológicos , Permeabilidade , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Suínos , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/ultraestrutura , Desmame
7.
Front Immunol ; 12: 788638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975882

RESUMO

Intestinal inflammation is a major threat to the health and growth of young animals such as piglets. As a next-generation probiotics, limited studies have shown that Akkermansia muciniphila could alleviate inflammation of intestinal epithelial cells (IECs). In this study, a TNF-α-induced inflammatory model of IPEC-J2 cells, the intestinal porcine enterocytes, was built to evaluate the effects of active or inactive A. muciniphila on the inflammation of IECs. The viability of IPEC-J2 cells was the highest when treated with active (108 copies/mL) or inactive (109 copies/mL) A. muciniphila for 7.5 h (P < 0.01). Treated with 20 ng/mL of TNF-α and followed by a treatment of A. muciniphila, the mRNA level of proinflammatory cytokines (IL-8, IL-1ß, IL-6 and TNF-α) was remarkably reduced (P < 0.05) along with the increased mRNA level of tight junction proteins (ZO-1 and Occludin, P < 0.05). Flow cytometry analysis showed that active or inactive A. muciniphila significantly suppressed the rate of the early and total apoptotic of the inflammatory IPEC-J2 cells (P < 0.05). According to results of transcriptome sequencing, active and inactive A. muciniphila may decline cell apoptosis by down-regulating the expression of key genes in calcium signaling pathway, or up-regulating the expression of key genes in cell cycle signaling pathway. And the bacterium may alleviate the inflammation of IECs by down-regulating the expression of PI3K upstream receptor genes. Our results indicate that A. muciniphila may be a promising NGP targeting intestinal inflammation.


Assuntos
Inflamação/dietoterapia , Mucosa Intestinal/imunologia , Probióticos/administração & dosagem , Akkermansia/imunologia , Animais , Sinalização do Cálcio/imunologia , Linhagem Celular , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Células Epiteliais , Humanos , Inflamação/imunologia , Mucosa Intestinal/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/imunologia , Suínos , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/imunologia
8.
Food Funct ; 10(12): 8149-8160, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31696186

RESUMO

Flaxseed oil (FO), enriched in n-3 polyunsaturated fatty acids (PUFAs), is an important oil source for intestinal development and health. We aimed to study the different effects of FO versus soybean oil (SO) on growth, intestinal health and immune function of neonates with intrauterine growth retardation (IUGR) using a weaned piglet model. Forty pairs of male IUGR and normal birth weight piglets, weaned at 21 ± 1 d, were fed diets containing either 4% FO or SO for 3 weeks consecutively. Growth performance, nutrient digestibility and intestinal function parameters, immunology and microbiota composition were determined. IUGR led to a poor growth rate, nutrient digestibility and abnormal immunology variables, whereas feeding FO diet improved systemic and gut immunity, as indicated by increased plasma concentration of immunoglobulin G and decreased CD3+CD8+ T lymphocytes, and down-regulated intestinal expression of genes (MyD88, NF-κB, TNF-α, IL-10). Although IUGR tended to decrease villous height, feeding FO diet tended to increase the villi-crypt ratio and up-regulated expressions of tight junction genes (Claudin-1 and ZO-1), together with increased mucosa contents of n-3 PUFAs and a lower Σn-6/Σn-3 ratio. Besides, FO diet decreased the abundance of pathogenic bacteria Spirochaetes, and increased phylum Actinobacteria, and genera Blautia and Bifidobacterium in colonic digesta. Our findings indicate that IUGR impairs growth rate, nutrient digestibility, and partly immunology variables, whereas feeding FO-supplemented diet could improve intestinal function and immunity of both IUGR and NBW pigs, associated with the altered gut microbiome and mucosal fatty acid profile.


Assuntos
Ácidos Graxos/química , Retardo do Crescimento Fetal/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Óleo de Semente do Linho/administração & dosagem , Doenças dos Suínos/tratamento farmacológico , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Claudina-1/genética , Claudina-1/metabolismo , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/microbiologia , Retardo do Crescimento Fetal/fisiopatologia , Intestinos/microbiologia , Masculino , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Doenças dos Suínos/fisiopatologia
9.
Br J Nutr ; 122(10): 1081-1090, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31637977

RESUMO

The present study compared the protective effect of sodium selenite (SS) and selenomethionine (SeMet) on heat stress (HS)-invoked porcine IPEC-J2 cellular damage and integrate potential roles of corresponding selenoprotein. Cells were cultured at 37°C until 80 % confluence and then subjected to four different conditions for 24 h: at 37°C (control), 41·5°C (HS), 41·5°C supplied with 0·42 µmol Se/L SS (SS), or SeMet (SeMet). HS significantly decreased cell viability, up-regulated mRNA and protein levels of heat shock protein 70 (HSP70) and down-regulated mRNA and protein levels of tight junction-related proteins (claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1)). HS-induced cell injury was associated with the up-regulation (P < 0·05) of six inflammation-related genes and fourteen selenoprotein encoding genes and down-regulation (P < 0·05) of two inflammation-related genes and five selenoprotein encoding genes. Compared with the HS group, SS and SeMet supplementation resulted in an increase (P < 0·05) in cell viability, decreased (P < 0·05) mRNA expression of HSP70 and six inflammation-related genes and rescue (P < 0·05) of mRNA and protein levels of CLDN-1 and ZO-1. SS and SeMet supplementation changes the expressions of nineteen selenoprotein encoding genes in cells affected by HS. Both Se supplementation significantly recovered the protein level of glutathione peroxidase-1 and increased selenoprotein P in the IPEC-J2 cells under HS, respectively. In summary, Se supplementation alleviated the negative impact of HS on IPEC-J2 cells, and their cellular protective effect was associated with regulation expression of selenoproteins, and SeMet exhibited a better protective effect.


Assuntos
Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico , Selênio/farmacologia , Selenoproteínas/metabolismo , Animais , Linhagem Celular , Mucosa Intestinal/citologia , Selenoproteínas/genética , Suínos
10.
Anim Nutr ; 4(3): 322-328, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30175262

RESUMO

This study evaluated the effects of arginine (Arg) or N-carbamylglutamate (NCG) on inflammation, antioxidant property, and antioxidant-related gene expression in rat spleen under oxidative stress. A total of 52 rats were randomly distributed into 4 treatment groups with 13 replicates per group. Rats were fed a basal diet (BD) or BD supplemented with Arg or NCG for 30 days. On day 28, half of the BD-fed rats were intraperitoneally injected with sterile saline (control group), and the other half with 12 mg/kg body weight of diquat (DT; DT group). The other 2 diet groups were intraperitoneally injected with 12 mg/kg body weight of DT with either Arg (1%) (DT + Arg) or NCG (0.1%) (DT + NCG). Rat spleen samples were collected for analysis at 48 h after DT injection. Results showed that DT damaged the antioxidant defense in rats compared with the control group (P < 0.05). Compared with the DT group, the DT + Arg and DT + NCG groups manifested improved anti-hydroxyl radical, catalase, and total superoxide dismutase (T-SOD) activities, increased glutathione content (P < 0.05), and decreased malondialdehyde content (P < 0.05). Moreover, compared with the DT group, the DT + Arg and DT + NCG groups enhanced mRNA expression of superoxide dismutase (SOD), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1(Keap-1), and mammalian target of rapamycin (mTOR) (P < 0.05). Both NCG and Arg significantly increased anti-inflammatory cytokine mRNA level but suppressed the pro-inflammatory cytokine mRNA expression under oxidative stress (P < 0.05). In summary, NCG and Arg effectively alleviated oxidative stress, improved the antioxidant capacity and regulated the antioxidant-related signaling molecular expression in rat spleen. N-carbamylglutamate and Arg reduced the inflammation in the spleen by mediating the gene expression of anti-inflammatory and pro-inflammatory cytokines and transforming growth factor-ß (TGF-ß).

11.
Biol Trace Elem Res ; 186(2): 505-513, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29671252

RESUMO

This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 µmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1ß, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-ß and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 µmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Selênio/farmacologia , Selenoproteínas/genética , Regulação para Cima/efeitos dos fármacos , Animais , Citocinas/genética , Perfilação da Expressão Gênica , Glutationa Redutase/genética , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Tiorredoxina Dissulfeto Redutase , Regulação para Cima/genética
12.
Arch Anim Nutr ; 71(3): 175-191, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429995

RESUMO

This study aimed to determine the effects of dietary spermine supplementation on the inflammatory response and immune function of the thymus and spleen in piglets. Eighty suckling piglets were randomly assigned to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight) or restricted nutrient intake supplemented with normal saline for 7 h or 3, 6 and 9 days in pairs. Regardless of treatment time, spermine supplementation decreased (p < 0.05, compared with the controls) the following: (1) tumour necrosis factor α (TNF-α), interleukin (IL)-1ß, 2 and 6, and interferon (IFN)-γ levels in serum; (2) gene expression of cluster of differentiation 8 and integrin beta-2 in the thymus and spleen and the lymphocyte function-associated antigen 1 in the thymus; (3) mRNA levels of TNF-α, IL 1ß, 2, 6, and 12, IFN-γ and inducible nitric oxide synthase in the thymus and spleen, as well as IL-8 in the spleen; and (4) eukaryotic IF4E-binding protein 1, Janus kinase 2, signal transducer and activator of transcription 3, and nuclear factor-kappa B P65 gene transcriptions in the thymus and spleen. By contrast, spermine supplementation increased (p < 0.05) the following: (1) immunoglobulin M, IL-10, and transforming growth factor ß1 gene expression, as well as (2) relative mRNA levels of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 in the thymus and spleen. These effects were also observed upon prolonged spermine administration (p < 0.05). In summary, dietary spermine supplementation can alleviate inflammatory response, enhance the immune function and regulate the gene expression of signalling molecules related to inflammation.


Assuntos
Dieta/veterinária , Suplementos Nutricionais , Regulação da Expressão Gênica/imunologia , Imunidade Inata/imunologia , Inflamação/veterinária , Transdução de Sinais/imunologia , Espermina , Ração Animal , Animais , Inflamação/imunologia , Inflamação/metabolismo , Baço/imunologia , Suínos , Doenças dos Suínos , Timo/imunologia
13.
Anim Nutr ; 3(1): 85-90, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29767047

RESUMO

Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency. Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids, modulating cell growth and differentiation, and regulating ion channel activities. Spermine has the potential to alleviate the effects of oxidative stress. However, to date no information is available about the effect of spermine administration on antioxidant property of the liver and spleen in any mammalian in vivo system. This study aims to investigate the protective effect of spermine on rat liver and spleen under oxidative stress. Rats received intragastric administration of either 0.4 µmol/g body weight of spermine or saline once a day for 3 days. The rats in each treatment were then injected with either diquat or sterile saline at 12 mg/kg body weight. Liver and spleen samples were collected 48 h after the last spermine ingestion. Results showed that regardless of diquat treatment, spermine administration significantly reduced the malondialdehyde (MDA) content by 23.78% in the liver and by 5.75% in the spleen, respectively (P < 0.05). Spermine administration also enhanced the catalase (CAT) activity, anti-hydroxyl radical (AHR) capacity and glutathione (GSH) content by 38.68%, 15.53% and 1.32% in the spleen, respectively (P < 0.05). There were interactions between spermine administration and diquat injection about anti-superoxide anion (ASA), AHR capacity, CAT activity, GSH content, and total antioxidant capacity (T-AOC) in the liver and about ASA capacity and T-AOC in the spleen of weaned rats (P < 0.05). Compared with the control group, spermine administration significantly increased the AHR capacity, CAT activity, GSH content, and T-AOC by 40.23%, 31.15%, 30.25%, 35.37% in the liver, respectively (P < 0.05) and increased the T-AOC by 8% in the spleen of weaned rats (P < 0.05). Compared with the diquat group, spermine + diquat group significantly increased ASA capacity by 15.63% in the liver and by 73.41% in the spleen of weaned rats, respectively (P < 0.05). Results demonstrate that spermine administration can increase the antioxidant capacity in the liver and spleen and can enhance the antioxidant status in the spleen and liver under oxidative stress.

14.
Biol Trace Elem Res ; 173(1): 71-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26899321

RESUMO

To determine the roles of selenoprotein X gene (Selx) in protecting liver cells against oxidative damage, the influences of Selx knockdown on H2O2-induced apoptosis in human normal hepatocyte (LO2) cells were studied. pSilencer 3.1 was used to develop knockdown vector targeting the 3'-UTR of human Selx. The Selx knockdown and control cells were further exposed to H2O2, and cell viability, cell apoptosis rate, and the expression levels of mRNA and protein of apoptosis-related genes were detected. The results showed that vector targeting the 3'-UTR of Selx successfully silenced mRNA or protein expression of SelX in LO2 cells. Selx knockdown resulted in decreased cell viability, increased percentage of early apoptotic cells, decreased Bcl2A1 and Bcl-2 expression, and increased phosphorylation of P38 in LO2 cells. When Selx knockdown LO2 cells were exposed to H2O2, characteristics of H2O2-induced cell dysfunctions were further exacerbated. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and reducing H2O2-induced apoptosis in liver cells.


Assuntos
Apoptose , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Fígado/metabolismo , Selenoproteínas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Hepatócitos/citologia , Humanos , Fígado/citologia , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Oxirredução/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Selenoproteínas/genética
15.
Anim Nutr ; 2(4): 370-375, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29767070

RESUMO

The main objective of this study was to investigate the effects of different doses of spermine and its extended supplementation on the morphology, digestive enzyme activities, and intestinal antioxidant capacity in weaning rats. Nineteen-day-old male rats received intragastric spermine at doses of 0.2 and 0.4 µmol/g BW for 3 or 7 d, whereas control rats received similar doses of saline. The results are as follows: 1) In the jejunum, the seven-day supplementation with both doses of spermine significantly increased crypt depth (P < 0.05) compared with the control group; the supplementation extension of the high spermine dose increased villus height and crypt depth (P < 0.05); in the ileum, the low spermine dose significantly increased villus height and crypt depth compared with the control group for 7 days (P < 0.05). 2) The 3-day supplementation with high spermine dose increased alkaline phosphatase activity in the jejunum (P < 0.05). 3) In the jejunum, the anti-hydroxyl radical (AHR), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); however, the malondialdehyde (MDA) content was reduced (P < 0.05) in groups supplemented with the high spermine dose relative to those in the control groups after 3 and 7 d; moreover, the anti-superoxide anion (ASA) and glutathione (GSH) contents increased with the high spermine dose that lasted for 3 days (P < 0.05). Furthermore, the T-SOD and CAT activities (after 3 and 7 d), ASA (after 3 d), and AHR (after 7 d) increased with the high spermine dose compared with those of the low spermine dose (P < 0.05). Extending the supplementation duration (7 d) of the high spermine dose decreased the MDA content and ASA and T-AOC activities (P < 0.05). These results suggested that spermine supplementation can modulate gut development and enhance the antioxidant status of the jejunum in weaning rats, and a dosage of 0.4 µmol spermine/g BW had better effects than the dosage of 0.2 µmol spermine/g BW on accelerating gut development and increasing antioxidant capacity.

16.
J Nutr ; 145(7): 1394-401, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972525

RESUMO

BACKGROUND: Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. OBJECTIVE: This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. METHODS: Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy-based control diet or that diet containing 3-7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. RESULTS: The high-fat diet elevated (P < 0.05) plasma concentrations of tumor necrosis factor α, interleukin-6, leptin, and leptin receptor by 29-42% and affected (P < 0.05-0.1) tissue mRNA levels of the selenoprotein and obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. CONCLUSIONS: The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue thyroid hormone activity, endoplasmic reticulum protein degradation, and phosphorylation of lipids. This porcine model may be used to study interactive mechanisms between excess fat intake and selenoprotein function.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/genética , Selenoproteínas/genética , Adiponectina/genética , Adiponectina/metabolismo , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Animais , Peso Corporal , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/genética , Interleucina-6/sangue , Leptina/sangue , Obesidade/etiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores para Leptina/sangue , Resistina/genética , Resistina/metabolismo , Selenoproteínas/metabolismo , Suínos , Hormônios Tireóideos/sangue , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima
17.
Biol Trace Elem Res ; 167(2): 236-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25846212

RESUMO

The purpose of this study was to compare messenger RNA (mRNA) expression of selenoprotein genes between hepatoma HepG2 and normal hepatocytes LO2 cell lines. Liver HepG2 and LO2 cells were cultured in 12-well plates under the same condition until cells grew to complete confluence, and then cells were harvested for total RNA and protein extraction. The qPCRs were performed to compare gene expression of 14 selenoprotein genes and 5 cancer signaling-related genes. Enzyme activities were also assayed. The results showed that human hepatoma HepG2 cells grew faster than normal hepatocytes LO2 cells. Among the genes investigated, 10 selenoprotein genes (Gpx1, Gpx3, Gpx4, Selx, Sepp, Sepw1, Sepn1, Selt, Seli, Selh) and 3 cancer signaling-related genes (Bcl-2A, caspase-3, and P38) were upregulated (P < 0.05), while Selo and Bcl-2B were downregulated (P < 0.05) in hepatoma HepG2 cells compared to LO2 cells. Significant correlations were found between selenoprotein genes and the cancer signaling-related genes Caspase3, P53, Bc1-2A, and Bc1-2B. Our results revealed that selenoprotein genes were aberrantly expressed in hepatoma HepG2 cells compared to normal liver LO2 cells, which indicated that those selenoprotein genes may play important roles in the occurrence and development of liver carcinogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biossíntese , Selenoproteínas/biossíntese , Células Hep G2 , Humanos
18.
Free Radic Biol Med ; 52(8): 1335-42, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22342560

RESUMO

Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn-soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3mg Se/kg diet, the 3.0mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.


Assuntos
Dieta , Resistência à Insulina , Selênio/administração & dosagem , Animais , Glicemia/análise , Feminino , Expressão Gênica , Homeostase , Insulina/sangue , Lipídeos/sangue , Fígado/metabolismo , Músculos/metabolismo , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA