Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Analyst ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874099

RESUMO

Persistent luminescent nanoparticles (PLNPs) are excellent luminescent materials, and near-infrared PLNPs are efficiently applied for biosensing and bioimaging due to their advantages of no excitation, excellent light stability and long afterglow. However, due to interference from the complex environment within organisms, single-mode imaging methods often face limitations in selectivity, sensitivity, and accuracy. Therefore, it is desirable to construct a dual-mode imaging probe strategy with higher specificity and sensitivity for bioimaging. Magnetic resonance imaging (MRI) has been widely used in the field of bioimaging due to its advantages of high resolution, non-radiation and non-invasiveness. Here, by combining near-infrared PLNPs and manganese dioxide (MnO2) nanosheets, a sensitive and convenient dual-mode "turn on" bioimaging nanoprobe ZGC@MnO2 has been developed for long afterglow imaging and MRI of endogenous hydrogen peroxide (H2O2) in the tumor microenvironment (TME). The monitoring of H2O2 has garnered significant attention due to its crucial role in human pathologies. For the dual-mode "turn on" bioimaging nanoprobe, the near-infrared PLNPs of quasi-spherical ZnGa2O4:Cr (ZGC) nanoparticles were synthesized as luminophores, and MnO2 nanosheets were utilized as a fluorescence quencher, carrier and H2O2 recognizer. H2O2 in the TME could reduce MnO2 nanosheets to Mn2+ for MRI, and ZGC nanoparticles were released for long afterglow imaging. Finally, the ZGC@MnO2 nanoprobe exhibited a rapid response, an excellent signal-to-noise ratio and a limit of detection of 3.67 nM for endogenous H2O2 in the TME. This dual-mode approach enhances the detection sensitivity for endogenous H2O2, thereby facilitating the research of endogenous H2O2-associated diseases and clinical diagnostics.

2.
Anal Chem ; 96(17): 6674-6682, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38642044

RESUMO

Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.


Assuntos
Imagem Óptica , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes , Humanos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
3.
Adv Sci (Weinh) ; 11(23): e2401738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489668

RESUMO

Bioenergetic therapy is emerging as a promising therapeutic approach. However, its therapeutic effectiveness is restricted by metabolic plasticity, as tumor cells switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) to compensate for energy. Herein, Metformin (MET) and BAY-876 (BAY) co-loaded CuFe2O4 (CF) nanoplatform (CFMB) is developed to boost energy deprivation by synchronous interventions of glycolysis and OXPHOS for bioenergetic therapy synergetic with chemodynamic/photothermal therapy (CDT/PTT). The MET can simultaneously restrain glycolysis and OXPHOS by inhibiting hexokinase 2 (HK2) activity and damaging mitochondrial function to deprive energy, respectively. Besides, BAY blocks glucose uptake by inhibiting glucose transporter 1 (GLUT1) expression, further potentiating the glycolysis repression and thus achieving much more depletion of tumorigenic energy sources. Interestingly, the upregulated antioxidant glutathione (GSH) in cancer cells triggers CFMB degradation to release Cu+/Fe2+ catalyzing tumor-overexpressed H2O2 to hydroxyl radical (∙OH), both impairing OXPHOS and achieving GSH-depletion amplified CDT. Furthermore, upon near-infrared (NIR) light irradiation, CFMB has a photothermal conversion capacity to kill cancer cells for PTT and improve ∙OH production for enhanced CDT. In vivo experiments have manifested that CFMB remarkably suppressed tumor growth in mice without systemic toxicity. This study provides a new therapeutic modality paradigm to boost bioenergetic-related therapies.


Assuntos
Glicólise , Metformina , Fosforilação Oxidativa , Terapia Fototérmica , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Camundongos , Terapia Fototérmica/métodos , Glicólise/efeitos dos fármacos , Humanos , Metformina/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/metabolismo
4.
J Transl Med ; 22(1): 123, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297325

RESUMO

BACKGROUND: Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS: A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS: Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION: The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.


Assuntos
Neoplasias Esofágicas , Estenose Esofágica , Animais , Humanos , Estenose Esofágica/terapia , Estenose Esofágica/prevenção & controle , Esofagoscopia/efeitos adversos , Esofagoscopia/métodos , Constrição Patológica/complicações , Qualidade de Vida
5.
Analyst ; 149(4): 1090-1101, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131340

RESUMO

N- and O-glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of N- and O-glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions. The adjustable charged surface and hydrophilic properties endow the material with the capability to achieve effective enrichment of intact N- and O-glycopeptides. The experimental results exhibited excellent selectivity (1 : 5000) and sensitivity (0.1 fmol µL-1) of the prepared material for N-glycopeptides from standard protein digest samples. Moreover, it was further applied to simultaneous capturing of N- and O-glycopeptides from mouse liver protein digests. Compared to the commercially available zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material, the number of glycoproteins corresponding to all N- and O-glycopeptides enriched with PDA-ADE@KCP was much more than that with ZIC-HILIC. Furthermore, PDA-ADE@KCP captured more O-glycopeptides than ZIC-HILIC, revealing its superior performance in O-glycopeptide enrichment. All these results indicated that the strategy holds immense potential in characterizing N- and O-intact glycopeptides in the field of proteomics.


Assuntos
Glicopeptídeos , Glicoproteínas , Animais , Camundongos , Glicopeptídeos/química , Eletricidade Estática , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas
6.
Analyst ; 148(23): 5963-5971, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37867382

RESUMO

Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.


Assuntos
Pesquisa Biomédica , MicroRNAs , Neoplasias , Humanos , Corantes Fluorescentes , Reprodutibilidade dos Testes , MicroRNAs/genética , Neoplasias/diagnóstico por imagem
7.
Colloids Surf B Biointerfaces ; 222: 113060, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538856

RESUMO

Tumor hypoxia and high levels of intracellular glutathione (GSH) significantly limit the efficacy of photodynamic therapy (PDT). In addition, a single PDT treatment strategy is relatively insufficient to eliminate tumor, further limiting its application in biomedicine. Therefore, we demonstrated an omnipotent nanoplatform based on 2,2'-azobis [2-(2 imidazolin-2-yl)propane] dihydrochloride (AIPH) loaded manganese dioxide (MnO2) nanoflower (abbreviated as MnO2-AIPH) with simultaneously self-supplying oxygen (O2), depleting GSH, performing PDT, photothermal (PTT) and thermodynamic therapy (TDT) for boosting antitumor effects. By 808 nm near infrared (NIR) light irradiation, MnO2-AIPH not only reveals highly toxic reactive oxygen species (ROS) generation and excellent photothermal conversion ability for PDT and PTT, but also generates alkyl radicals by decomposing AIPH for TDT simultaneously to eliminate tumor effectively. Once internalized into the tumor, MnO2 will be degraded to Mn2+ which catalyzes endogenous hydrogen peroxide (H2O2) into O2 for enhanced PDT. Moreover, MnO2 can facilitate GSH oxidation to amplify oxidative stress, further enhancing ROS and alkyl radicals mediated cancer cell killing. In brief, this study provides a paradigm of antitumor efficiency amplification by the combination of sustained oxygen supply, potent GSH depletion, and phototherapy synergistic TDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Compostos de Manganês/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Óxidos/farmacologia , Fototerapia , Oxigênio , Neoplasias/tratamento farmacológico , Glutationa/metabolismo , Linhagem Celular Tumoral
8.
J Colloid Interface Sci ; 629(Pt A): 103-113, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36054988

RESUMO

Chemodynamic therapy (CDT), which suppresses tumors via the conversion of endogenous hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH), is deemed as a cutting-edge antitumor strategy. However, the insufficient endogenous H2O2 and up-regulated antioxidant glutathione (GSH) in the tumor microenvironment (TME) greatly impede the therapeutic effect of CDT. Herein, a versatile nanoplatform MgO2@SnFe2O4@PEG (MSnFeP) is elaborately fabricated for boosting CDT synergetic phototherapy. In the TME, the activation of MSnFeP contributes to in situ supply of H2O2, generation of •OH and consumption of GSH for boosted CDT. Furthermore, photothermal therapy (PTT) and photodynamic therapy (PDT) are simultaneously stimulated by near-infrared (NIR) light exposure on MSnFeP to increase the toxic free radical yield. This strategy not only amplifies the CDT efficacy hindered by H2O2 deficiency and GSH overexpression, but also further enhances the therapeutic effect with the combination of phototherapy.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Antioxidantes , Óxido de Magnésio/uso terapêutico , Linhagem Celular Tumoral , Fototerapia , Glutationa , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
Colloids Surf B Biointerfaces ; 221: 112997, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334518

RESUMO

Chemodynamic therapy (CDT), which employs Fenton/Fenton-like agents to decompose hydrogen peroxide (H2O2) into toxic hydroxyl radical (•OH) to induce cancer cell apoptosis and necrosis, holds great promise in tumor therapy due to its high selectivity. Nevertheless, its efficiency is impaired by the insufficient intracellular H2O2 concentration and/or the insensitive response of Fenton/Fenton-like agents to the slightly acid tumor microenvironment (pH∼7.0-6.5). Herein, we develop a novel CDT reagent based on CeO2 quantum dot (QD) decorated MgO2 nanosheets engineered with cascade reactions to boost the intracellular H2O2 level and high pH-activated (pH = 6.5) characteristic for an enhanced CDT. Under the tumor microenvironment (pH = 6.5), MgO2 nanosheets that are highly reactive can react with H2O to produce nontoxic Mg2+ and abundant H2O2, boosting the intracellular H2O2 level. The self-generated H2O2 is subsequently converted into •OH by CeO2 QD, which is served as a relatively high pH-activated (pH = 6.5) Fenton-like agent. The sufficient intracellular H2O2 supply and sensitive response to the slightly acid tumor sites significantly improve the Fenton reaction, leading to the excellent in vivo CDT results with tumor growth inhibition effect. Our work presents a distinctive paradigm for self-boosting CDT efficacy.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Peróxido de Hidrogênio/farmacologia , Óxido de Magnésio/farmacologia , Microambiente Tumoral , Radical Hidroxila , Neoplasias/patologia , Linhagem Celular Tumoral
10.
Anal Chem ; 94(16): 6363-6370, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412805

RESUMO

A high-performance field asymmetric waveform ion mobility spectrometry (FAIMS)-IMS-MS platform was developed and applied to explore the conformational diversity of the singly and doubly charged bradykinin (BK + H+)+ and (BK + 2H+)2+ ions. With pure N2 as the FAIMS carrier gas, more than ten conformers of (BK + H+)+ can be resolved using FAIMS-IMS, as compared to only four conformers resolved using either FAIMS or IMS alone. Interestingly, multiple conformers of (BK + H+)+ were found to have completely different values of FAIMS compensation voltage (CV), while their IMS drift times were essentially the same, which were also proven experimentally to not result from the structural annealing by the collisional heating in the ion funnel. The separations in the FAIMS and IMS dimensions are substantially orthogonal, and the overall resolving power of two-dimensional FAIMS-IMS separation is largely proportional to the product of the separation resolving powers of FAIMS and IMS. Using a gas mixture of N2/He to further improve the resolving power of the FAIMS separation, the total resolving powers of the combined FAIMS and IMS separation were estimated to be about 1020 and 1400 for (BK + H+)+ and (BK + 2H+)2+ ions, respectively, which are significantly higher than the resolving power of any ion mobility-based separation techniques demonstrated so far. The combined FAIMS-IMS can thus be a much more powerful technique to explore the structural diversity of biomolecules.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Bradicinina , Íons/química , Espectrometria de Massas/métodos , Peptídeos/química
11.
Talanta ; 236: 122831, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635221

RESUMO

In this study, a novel type of covalent organic framework (COF) material rich in boronic acid sites was prepared through post-synthesis modification (TbBD@PEI@Au@4-MPBA). The surface of COF material had abundant carboxylic acid groups, which could bind a large amount of polyethyleneimine (PEI) through electrostatic interaction. At the same time, the amino groups on the PEI can be grafted with Au nanoparticles (Au NPs) in situ, and then 4-mercaptophenylboronic acid (4-MPBA) was modified by the reaction of Au and sulfhydryl groups. The massive grafting of boronic acid groups made the material's enrichment effect on glycopeptides expected. The results of experiments indicated that the composite material has high sensitivity (5 amol µL-1) and selectivity (1:1000). In addition, the material has outstanding stability and reusability, with a load capacity of about 100 mg g-1 and a recovery of 99.3 ± 2.2%. What's more, after enriched by TbBD@PEI@Au@4-MPBA, 56 endogenous glycopeptides from fresh human saliva were detected by MALDI-TOF MS, 56 unique glycopeptides corresponding to 31 glycoproteins from human saliva and 513 unique glycopeptides corresponding to 208 glycoproteins from serum of throat cancer patient were detected by nano-LC-MS/MS, respectively, which was expected to be applied to glycoproteomics research.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Glicopeptídeos , Ouro , Humanos , Interações Hidrofóbicas e Hidrofílicas , Saliva , Espectrometria de Massas em Tandem
12.
J Chromatogr A ; 1655: 462505, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500222

RESUMO

Herein, a hydrophilic graphene composite functionalized with glutathione (GSH) and L(+)-Cysteine (Cys) was prepared via a simple and fast synthesis route, which was named G@S@Au@GC. The combination attack with two different zwitterionic polymers resulted in enhanced adsorption sites for glycopeptides. The obtained G@S@Au@GC exhibited excellent performance on a low limit of detection (0.2 fmol), a high selectivity (HRP: bovine serum albumin = 1:1500), a good load capacity (250 µg•mg-1) and recovery rate (93%), which was also evaluated with IgG. Subsequently, 60 glycopeptides from complex biological sample (human saliva) were identified by Nano-LC-MS/MS. The advantages of combination attack, low-cost, simple and fast synthesis, and superior enrichment performance make G@S@Au@GC composite a bright future on glycoproteomics analysis and related diseases.


Assuntos
Glicopeptídeos , Grafite , Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas em Tandem
13.
Colloids Surf B Biointerfaces ; 208: 112103, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509084

RESUMO

Chemodynamic therapy (CDT) is an emerging tumour-specific therapeutic technology. However, the relatively insufficient catalytic activity of CDT agents in the tumour microenvironment (TME) limits their biomedical application. In addition, severe hypoxia and glutathione (GSH) overexpression in the TME greatly limit the antitumour efficiency of monotherapy. Herein, a cancer cell membrane-camouflaged and ultrasmall CeO2-decorated MnO2 (mMC) composite is developed for amplified CDT, photodynamic therapy (PDT) and photothermal therapy (PTT). Due to the homotypic targeting ability of cancer cell membranes, mMC nanoparticles preferentially accumulate in tumour tissue. In the TME, CeO2 acts as a highly efficient CDT agent to convert endogenous H2O2 to toxic reactive oxygen species (ROS) for killing cancer cells. Meanwhile, MnO2 irradiated with near-infrared (NIR) light displays prominent hyperthermia and ROS generation performance to perform PTT and PDT. Moreover, MnO2 can produce oxygen to ameliorate hypoxia and deplete GSH to relieve the antioxidant capability of tumours, which is beneficial to the simultaneous augmentation of PDT and CDT. Most importantly, the catalytic activity of CeO2 was greatly improved by hyperthermia. Consequently, a significantly enhanced therapeutic efficiency was obtained by the above multiple synergistic effects. This work provides a proof of concept for amplified tumour therapy by synchronously self-supplying oxygen, consuming GSH, and enhancing catalytic activity.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrogênio , Compostos de Manganês , Neoplasias/tratamento farmacológico , Óxidos , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
14.
Photochem Photobiol Sci ; 20(1): 153-160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721245

RESUMO

A flower-like nanostructured MnO2 with near-infrared (NIR) light-triggered high photothermal conversion capability of 30% and reactive oxygen species (ROS) generation ability was successfully developed. Different from the reported MnO2 nanomaterials those were used in the nanomedicine field for only relieving tumor hypoxia and/or imaging, the flower-like MnO2 inherently acts as a competent agent for simultaneously enhanced photothermal and photodynamic therapy. A flower-like nanostructured MnO2 with near-infrared (NIR) light triggered high photothermal conversion capability of 30% and reactive oxygen species (ROS) generation ability was successfully developed.


Assuntos
Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Raios Infravermelhos , Compostos de Manganês/metabolismo , Compostos de Manganês/farmacologia , Óxidos/metabolismo , Óxidos/farmacologia , Fototerapia , Espécies Reativas de Oxigênio/metabolismo
15.
Talanta ; 228: 122263, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773719

RESUMO

Herein, a novel zwitterionic hydrophilic metal-organic framework (MOF)-functionalized material was synthesized through grafting l-glutathione (GSH) onto the Au which acts as the intermediate layer to modify the base material (PEI-ZIF-8) by the sulfhydryl group provided by GSH and the affinity provided by Au (denoted as PEI-ZIF-8@Au@GSH). The obtained product was employed to capture glycopeptides. Benefit from its excellent hydrophilic properties, abundant amphoteric ions, and unique large specific surface area, this material demonstrated amazing ability in the enrichment and identification of glycopeptides. As a result, the PEI-ZIF-8@Au@GSH displayed high sensitivity (as low as 2 fmol), excellent binding capacity (500 mg/g), outstanding enrichment selectivity (maximum mass ratio HRP to BSA is 1:1000) toward glycopeptides, and the ability to recycle at least five times. Furthermore, 35 and 51 glycopeptides were successfully detected from 5 µL human saliva and human serum respectively in the examination of the actual sample by MALDI-TOF MS. The above results indicated that the PEI-ZIF-8@Au@GSH had a satisfactory potential in the field of glycoproteomics.


Assuntos
Glicopeptídeos , Nanopartículas Metálicas , Glutationa , Ouro , Humanos , Interações Hidrofóbicas e Hidrofílicas
16.
Anal Chem ; 93(2): 859-867, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33226780

RESUMO

Chiral analysis is critical to many research fields due to different biological functions of enantiomers in living systems. Although the use of ion mobility spectrometry (IMS) has become an alternative technology in the area of chiral measurements, there is still a lack of a general chiral selector for IMS-based chiral recognition, especially for small chiral molecules. Here, a new method using oligosaccharides as the chiral selector has been developed to discriminate chiral amino acids (AAs) by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). We analyzed 21 chiral amino acids, including small molecules (e.g., alanine and cysteine). Our data showed that the use of nonreducing tetrasaccharides was effective for the separation of chiral AAs, which differentiated 21 chiral AAs without using metal ions. By further incorporating a copper ion, the separation resolution could be improved to 1.64 on average, which accounts for an additional 52% improvement on top of the already achieved separation in metal-free analysis. These results indicate that the use of tetrasaccharides is an effective strategy for the separation of AA enantiomers by TIMS. The method developed in this study may open up a new strategy for effective IMS-based chiral analysis.


Assuntos
Aminoácidos/análise , Oligossacarídeos/química , Espectrometria de Mobilidade Iônica , Espectrometria de Massas
17.
Lab Chip ; 20(24): 4632-4637, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33169756

RESUMO

Tumor-derived exosomes, which contain RNA, DNA, and proteins, are a potentially rich non-invasive source of biomarkers. However, no efficient isolation or detection methods are yet available. Here, we developed a microfluidic Raman biochip designed to isolate and analyze exosomes in situ. Anti-CD63 magnetic nanoparticles were used to enrich exosomes through mixing channels of a staggered triangular pillar array. EpCAM-functionalized Raman-active polymeric nanomaterials (Raman beads) allow rapid analysis of exosome samples within 1 h, with a quantitative signal at 2230 cm-1. The limit of detection of this biochip approaches 1.6 × 102 particles per mL with 20 µL samples. The newly developed biochip assay was successfully applied in the determination of exosomes from clinical serum samples. Thus, this novel device may have potential as a clinical exosome analysis tool for prostate cancer.


Assuntos
Exossomos , Nanoestruturas , Neoplasias da Próstata , Humanos , Masculino , Análise em Microsséries , Microfluídica , Neoplasias da Próstata/diagnóstico
18.
Biomater Sci ; 8(2): 607-618, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31793930

RESUMO

Although combined chemotherapy (Chemo), photothermal (PTT) and photodynamic (PDT) in cancer therapy has drawn significant attention due to its superior anticancer ability, the required high intensity of irradiation results in serious photo-toxicity to healthy neighboring cells, and thus limits its biomedical applications. Herein, we developed an ultralow-intensity near infrared (NIR) light synchronously activated collaborative Chemo/PTT/PDT nanoplatform. The nanoplatform is composed of a highly emissive upconversion (UC) core, chlorin e6 (Ce6) photosensitizer and the anticancer drug doxorubicin hydrochloride (DOX) co-loaded in a mesoporous silica (MS) shell, and polyethylene glycol-modified graphene (PGO) acts as both the photothermal reagent and smart switch for promoted drug release. Upon 808 nm NIR light exposure with ultralow intensity (0.25 W cm-2), which is below the maximum permissible exposure (MPE, 0.33 W cm-2) for skin, the mild hyperpyrexia of PGO induced both cancer cell irreversible death for PTT and greatly promoted drug release for enhanced Chemo. On the other hand, the upconverted 660 nm light from UC activated Ce6 to generate reactive oxygen species for PDT, while the upconverted 540 nm light from UC could be employed for visualizing the treatment process. The in vitro and in vivo anticancer experiments demonstrate that the ultralow-intensity NIR light synchronously activated Chemo/PTT/PDT nanoplatform exhibits remarkable therapeutic efficacy with minimal photodamage.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/síntese química , Doxorrubicina/química , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Células Tumorais Cultivadas
19.
Rapid Commun Mass Spectrom ; 34(5): e8607, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31657490

RESUMO

RATIONALE: Glycosylation of proteins plays an important role in life activities, but the concentration of naturally occurring glycopeptides is usually relatively low, and glycosylation has microfacies heterogeneity, so direct mass spectrometry is not feasible. Therefore, selective enrichment of glycopeptides before mass spectrometry has turned into an urgent problem to be resolved. METHODS: Herein, the zwitterionic L-cysteine functionalized hydrophilic graphene oxide composite (GO@PDA@MIL-125-NH2 @Au@L-Cys) was prepared via a postsynthetic method. The obtained material was used for glycopeptide enrichment. The enriched peptides were then detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) to demonstrate the enrichment performance of the material. RESULTS: In the actual enrichment process, GO@PDA@MIL-125-NH2 @Au@L-Cys nanomaterials exhibited high selectivity (1:1000), outstanding sensitivity (0.5 fmol), and excellent repeatability for the enrichment of glycopeptides. In addition, the proposed material showed good performance in the enrichment of glycopeptides from complex biosamples; 56 glycopeptides were detected from 2 µL of human serum using MALDI-TOFMS. CONCLUSIONS: The experimental results showed that GO@PDA@MIL-125-NH2 @Au@L-Cys exhibited excellent performance on glycopeptide analysis. It has great potential in the enrichment of glycopeptides and provides new ideas for synthetic materials with better enrichment properties in the future.


Assuntos
Glicopeptídeos/sangue , Glicopeptídeos/química , Cisteína/química , Ouro/química , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Estruturas Metalorgânicas/química , Microscopia Eletrônica de Varredura , Polímeros/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
20.
Nanoscale ; 11(43): 20903-20909, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31660560

RESUMO

Numerous studies have demonstrated that cancer-related matrix metalloproteinase-9 (MMP-9) is an ideal biomarker for cancer diagnosis. However, most MMP-9 detection methods are expensive and time-consuming, and more convenient and specific MMP-9 detection methods are needed both clinically and in research. In the present study, peptide-linked polymer dots were assembled onto a graphene oxide surface to construct a graphene oxide-peptide-polymer dot (GO-Pep-Pdot) nanocomplex for sensitive, rapid, and accurate detection of MMP-9. In the absence of MMP-9, the nanocomplex was in an "off" state, whereas in the presence of MMP-9, the nanocomplex was turned "on", resulting in the emission of a fluorescence signal that is linearly correlated with the MMP-9 concentration. The limit of detection of the nanocomplex was 3.75 ng mL-1, lower than most methods. This method was successfully verified by detecting MMP-9 in clinical serum samples of prostate cancer. The results suggest that this protease nanocomplex is generic and can be adopted to respond to other proteases by selecting specific peptides with suitable cleavage sites in clinics.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Grafite/química , Metaloproteinase 9 da Matriz/análise , Nanoestruturas/química , Polímeros/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Limite de Detecção , Metaloproteinase 9 da Matriz/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA