Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624186

RESUMO

BACKGROUND: The relationship between socio-economic status and bone-related diseases is attracting increasing attention. Therefore, a bidirectional Mendelian randomization (MR) analysis was performed in this study. METHODS: Genetic data on factors associated with socio-economic status (average total household income before tax, years of schooling completed and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fracture (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses, and multivariable MR was performed to enhance the robustness of our findings. RESULTS: A higher educational attainment was associated with an increased level of eBMD (beta:0.06, 95% CI:0.01-0.10, P = 7.24 × 10-3), and decreased risk of osteoporosis (OR:0.78, 95% CI:0.65-0.94, P = 8.49 × 10-3), spine fracture (OR:0.76, 95% CI:0.66-0.88, P = 2.94 × 10-4), femur fracture (OR:0.78, 95% CI:0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR:0.79, 95% CI:0.70-0.88, P = 2.05 × 10-5), foot fracture (OR:0.78, 95% CI:0.66-0.93, P = 5.92 × 10-3) and wrist-hand fracture (OR:0.83, 95% CI:0.73-0.95, P = 7.15 × 10-3). Further, material deprivation seemed to harm the spine fracture (OR:2.63, 95% CI:1.43-4.85, P = 1.91 × 10-3). A higher level of FN-BMD positively affected increased household income (beta:0.03, 95% CI:0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index (BMI), type 2 diabetes, smoking initiation, and frequency of alcohol intake. CONCLUSIONS: The Mendelian randomization analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings offer valuable insights into the formulation of health guidelines and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.

2.
J Mater Chem B ; 12(10): 2559-2570, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38362614

RESUMO

Pathologic myopia has seriously jeopardized the visual health of adolescents in the past decades. The progression of high myopia is associated with a decrease in collagen aggregation and thinning of the sclera, which ultimately leads to longer eye axis length and image formation in front of the retina. Herein, we report a fibroblast-loaded hydrogel as a posterior scleral reinforcement (PSR) surgery implant for the prevention of myopia progression. The fibroblast-loaded gelatin methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel was prepared through bioprinting with digital light processing (DLP). The introduction of the PEGDA component endowed the GelMA-PEGDA hydrogel with a high compression modulus for PRS surgery. The encapsulated fibroblasts could consistently maintain a high survival rate during 7 days of in vitro incubation, and could normally secrete collagen type I. Eventually, both the hydrogel and fibroblast-loaded hydrogel demonstrated an effective shortening of the myopic eye axis length in a guinea pig model of visual deprivation over three weeks after implantation, and the sclera thickness of myopic guinea pigs became significantly thicker after 4 weeks, verifying the success of sclera remodeling and showing that myopic progression was effectively controlled. In particular, the fibroblast-loaded hydrogel demonstrated the best therapeutic effect through the synergistic effect of cell therapy and PSR surgery.


Assuntos
Miopia , Esclera , Animais , Cobaias , Modelos Animais de Doenças , Esclera/patologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Miopia/tratamento farmacológico , Miopia/prevenção & controle , Miopia/patologia , Fibroblastos/patologia , Impressão Tridimensional
3.
J Nanobiotechnology ; 21(1): 315, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667298

RESUMO

Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.


Assuntos
Exossomos , MicroRNAs , Calcificação Vascular , Animais , Camundongos , Células Endoteliais , Fibroblastos , Fósforo , MicroRNAs/genética , Receptores de Proteínas Morfogenéticas Ósseas
4.
Front Pharmacol ; 14: 1112484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169000

RESUMO

Introduction: Necroptosis is an alternative, caspase-independent programmed cell death that appears when apoptosis is inhibited. A gowing number of studies have reflected the link between necroptosis and tumors. However, only some systematical bibliometric analyses were focused on this field. In this study, we aimed to identify and visualize the cooperation between countries, institutions, authors, and journals through a bibliometric analysis to help understand the hotspot trends and emerging topics regarding necroptosis and cancer research. Methods: The articles and reviews on necroptosis and cancer were obtained from the Web of Science Core Collection on 16 September 2022. Countries, institutions, authors, references, and keywords in this field were visually analyzed by CtieSpace 5.8.R3, VOSviewer 1.6.18, and R package "bibliometrix." Results: From 2006 to 2022, 2,216 qualified original articles and reviews on necroptosis in tumors were published in 685 academic journals by 13,009 authors in 789 institutions from 75 countries/regions. Publications focusing on necroptosis and cancer have increased violently in the past 16 years, while the citation number peaked around 2008-2011. Most publications were from China, while the United States maintained the dominant position as a "knowledge bridge" in necroptosis and cancer research; meanwhile, Ghent University and the Chinese Academy of Sciences were the most productive institutions. Moreover, only a tiny portion of the articles were multiple-country publications. Peter Vandenabeele had the most significant publications, while Alexei Degterev was most often co-cited. Peter Vandenabeele also gets the highest h-index and g-index in this research field. Cell Death and Disease was the journal with the most publications on necroptosis and cancer, which was confirmed to be the top core source by Bradford's Law. At the same time, Cell was the leading co-cited journal, and the focus area of these papers was molecular, biology, and immunology. High-frequency keywords mainly contained those that are molecularly related (MLKL, NF-kB, TNF, RIPK3, RIPK1), pathological process related (necroptosis, apoptosis, cell-death, necrosis, autophagy), and mechanism related (activation, expression, mechanisms, and inhibition). Conclusion: This study comprehensively overviews necroptosis and cancer research using bibliometric and visual methods. Research related to necroptosis and cancer is flourishing. Cooperation and communication between countries and institutions must be further strengthened. The information in our paper would provide valuable references for scholars focusing on necroptosis and cancer.

5.
Int J Nanomedicine ; 18: 933-948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852185

RESUMO

Background: Nanomaterials exhibited intrinsic enzyme-like properties due to the unique properties compared with natural enzyme. Carbon dots (CDs) are an important kind of quantum-sized nanomaterials, which have enormous application potential in bio-imaging, drug carrier, and nanosystems. Carbon dots possess intrinsic enzyme-like properties, such as glutathione (GSH) oxidase or peroxidase activities. Methods: A co-delivery nanosystem that could carry siRNA and doxorubucin (DOX) simultaneously has been studied in this work. The co-delivery based on carbon dots was surface-modified with poly-ethylenimine (PEI) and loaded the siMRP1 with chemotherapeutics on the surface with pH-triggered drug release. The CD-PEI was synthesized by one-step microwave assisted method; the PEI was raw materials and passivator during the reaction process that makes CDs exhibit excellent optical property. Results: The CD-PEI was capable of loading and delivering siMRP1 and DOX to tumors and releasing them synchronously in cells in an acid-triggered manner. The particles exhibited GSH oxidase-like catalytic property, oxidizing GSH to oxidized glutathione with concomitant increase of reactive oxygen species (ROS). We found that silencing of MRP1 by co-delivery system antagonized chemoresistance by increasing DOX accumulation and significantly enhancing the inhibitory effect of cell viability induced by CD-PEI-DOX. The co-delivery system dramatically inhibited tumor growth in xenograft model, and CDs counteracted MRP1 function by siRNA-mediated knockdown of MRP1. Conclusion: Taken together, we uncover the potential role of CDs with a combination of siRNA and chemotherapeutics in overcoming chemoresistance of lung cancer by suppressing MRP1 and oxidation of GSH. Our findings imply its potential of antagonizing chemoresistance to enhance therapeutic efficiency of doxorubicin in clinical practices of lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Humanos , Carbono , Doxorrubicina/farmacologia , Glutationa , Neoplasias Pulmonares/tratamento farmacológico , Oxirredutases , RNA Interferente Pequeno , Resistencia a Medicamentos Antineoplásicos
6.
Biomater Sci ; 11(3): 840-853, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36512317

RESUMO

Segmental bone defects over the self-healing threshold are a major challenge for orthopedics. Despite the advancements in clinical practice, traditional tissue engineering methods are limited by the addition of heterogeneous cells and cytokines, leading to carcinoma or other adverse effects. Here, we present a cell-free and cytokine-free strategy using an ECM-mimetic self-assembling peptide hydrogel (SAPH)- polycaprolactone (PCL) composite scaffold. The hydrophilic SAPH endows the rigid PCL scaffold with excellent biocompatibility and preference for osteogenesis induction. The autologous cells around the bone defect site immediately grew, proliferated, and secreted ECM and cytokines after contacting the implanted SAPH-PCL composite scaffold, and the bone repair of rabbit ulnar segmental bone defect was achieved in just six months. Quantitative proteomic analysis reveals that the SAPH-PCL composite scaffold accelerates osteoblastogenesis, osteoclastogenesis, and angiogenesis with moderate immune responses and negligible effects on pathological fibrosis. These findings have important implications for the potential clinical applications of the SAPH-PCL composite scaffold in patients with segmental bone defects and identify the mechanisms of action for accelerated segmental bone defect repair.


Assuntos
Hidrogéis , Alicerces Teciduais , Animais , Coelhos , Proteômica , Engenharia Tecidual/métodos , Osteogênese , Poliésteres/farmacologia , Peptídeos
7.
J Vet Med Sci ; 83(11): 1750-1759, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615843

RESUMO

The screening of reference genes for real-time quantitative PCR (qPCR) in forest musk deer (FMD) tissue is of great significance to the basic research on FMD. However, there are few reports on the stability analysis of FMD reference genes so far. In this study, We used qPCR to detect the expression levels of 11 reference gene candidates (18S rRNA, beta-actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box-binding protein [TBP], hypoxanthine phosphoribosyltransferase 1 [HPRT1], tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide [YWHAZ], hydroxymethylbilane synthase [HMBS], eukaryotic translation elongation factor 1 alpha 1 [EEF1A1], succinate dehydrogenase complex flavoprotein subunit A [SDHA], peptidylprolyl isomerase B [PPIB], and ubiquitin C [UBC]) in heart, liver, spleen, lung and kidney of FMD. After removing 18S rRNA on account of its high expression level, geNorm, NormFinder, BestKeeper and ΔCt algorithms were used to evaluate the expression stability of the remaining genes in the five organs, and further comprehensive ranking was calculated by RefFinder. According to the results, the selected reference genes with the most stable expression in the heart of FMD are SDHA and YWHAZ, while in the liver are ACTB and SDHA; in the spleen and lung are YWHAZ and HPRT1; in the kidney are YWHAZ and PPIB. The use of common reference genes in all five organs is not recommended. The analyses showed that tissue is an important variability factor in genes expression stability. Meanwhile, the result can be used as a reference for the selection of reference genes for qPCR in further study.


Assuntos
Cervos , Perfilação da Expressão Gênica , Animais , Cervos/genética , Florestas , Expressão Gênica , Perfilação da Expressão Gênica/veterinária , Rim , Fígado , Pulmão , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Padrões de Referência , Baço
8.
Discov Oncol ; 12(1): 35, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201430

RESUMO

Previous studies have shown that selenium possessed chemotherapeutic effect against multiple malignant cancers, inducing diverse stress responses including apoptosis and autophagy. Selenite was previously shown to induce apoptosis and autophagy in colorectal cancer cells. However, the relationship between selenite-induced apoptosis and autophagy was not fully understood. Our results revealed a pro-survival role of selenite-induced autophagy against apoptosis in colorectal cancer cells. Real-time PCR array of autophagy-related genes showed that GABARAPL-1 was significantly upregulated in colorectal cancer cells, which was confirmed by western blot and immunofluorescence results. Knockdown of GABARAPL-1 significantly inhibited selenite-induced autophagy and enhanced apoptosis. Furthermore, we found that selenite-induced upregulation of GABARAPL-1 was caused by upregulated p-AMPK and FoxO3a level. Their interaction was correlated with involved in regulation of GABARAPL-1. We observed that activation and inhibition of AMPK influenced both autophagy and apoptosis level via FoxO3a/ GABARAPL-1 signaling, implying the pro-survival role of autophagy against apoptosis. Importantly, we corroborated these findings in a colorectal cancer xenograft animal model with immunohistochemistry and western blot results. Collectively, these results show that sodium selenite could induce ROS/AMPK/FoxO3a/GABARAPL-1-mediated autophagy and downregulate apoptosis in both colorectal cancer cells and colon xenograft model. These findings help to explore sodium selenite as a potential anti-cancer drug in clinical practices.

9.
ACS Appl Mater Interfaces ; 12(26): 29094-29102, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510916

RESUMO

The Fe element is essential for human beings, but overdose of Fe leads to unwanted toxicity. However, overwhelming Fe accumulation in tumor cells could arouse strong oxidative stress for cancer therapy. Therefore, the fast and specific accumulation of Fe in tumor cells without systemic toxicity is critical for this purpose. Herein, we report that a carbon nanoparticles-Fe(II) complex (CNSI-Fe) could efficiently load Fe into tumor cells and inhibit tumor growth with low toxicity in H22 tumor-bearing mice. Upon intratumoral injection, CNSI-Fe only induced meaningful Fe increase in the tumor to significantly inhibit tumor growth with competitive efficiency to cis-dichlorodiammineplatinum(II). Fe accumulation stimulated the hydroxyl radical generation and serious oxidative stress in the tumor. Due to the lack of Fe accumulation in other tissues, CNSI-Fe was of low systemic toxicity to tumor-bearing mice. With the clinical success of CNSI for decades, CNSI-Fe might be used for cancer therapy through "off label" use to benefit patients immediately.


Assuntos
Carbono/química , Nanopartículas/química , Animais , Cisplatino/química , Humanos , Radical Hidroxila/química , Ferro/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
10.
MedComm (2020) ; 1(2): 202-210, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766118

RESUMO

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). Carbon nanoparticles suspension injection (CNSI) is a commercial imaging reagent for lymph node mapping. CNSI has similar structural characteristics to other carbon nanomaterials, and thus, might be applied as photothermal agent. Herein, we evaluated the photothermal conversion ability and therapeutic effects of CNSI on thyroid carcinoma. CNSI was composed by carbon nanoparticle cores and polyvinylpyrrolidone K30 as the dispersion reagent. CNSI absorbed NIR light efficiently following the Lambert-Beer law. The temperature of CNSI dispersion increased quickly under the NIR irradiation. CNSI killed the TCP-1 thyroid carcinoma cells under 808 nm laser irradiation at 0.5 W/cm2, while CNSI or NIR irradiation treatment alone did not demonstrate this effect. Temperature increases were observed in tumor injected with CNSI under NIR irradiation. After three irradiation treatments, the tumor growth was completely blocked and the disruption of cellular structure was observed. When the tumor temperatures reached 53°C during treatment, the tumors did not recur within the observation period of 3 months. Our results suggested that CNSI might be used for PTT through "off label" use to benefit the patients immediately.

11.
Mol Cancer ; 17(1): 109, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064416

RESUMO

Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.


Assuntos
Histonas/metabolismo , Neoplasias Ovarianas/metabolismo , Acetilação , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Metilação , Neoplasias Ovarianas/genética
12.
Diab Vasc Dis Res ; 10(1): 49-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22561229

RESUMO

Endothelial progenitor cells (EPCs) play a fundamental role in tissue regeneration and vascular repair both by differentiating into endothelial cells and by secretion of vasoactive substances that promote angiogenesis and maintain vascular homeostasis. It has previously been shown that hyperglycaemia impairs early and late EPC functions, such as differentiation, proliferation and adhesion. However, its role in the regulation of the production of vasoactive substances in EPCs, especially in late EPCs, is less well defined. We investigated the effects of hyperglycaemia on the production of vasodilator, fibrinolytic and angiogenic growth factors, and also on the activity of superoxide dismutase (SOD) in late EPCs. For this purpose, late EPCs were incubated with different concentrations of D-glucose (5-40 mmol/L) for 24 hr. Levels of nitric oxide (NO), tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), prostaglandin I(2) (PGI(2)), vascular endothelial growth factor (VEGF) and the activity of SOD were measured by enzyme-linked immunosorbent assay (ELISA). Under high glucose stress conditions, late EPCs exhibited lower levels of NO, t-PA, PAI-1, PGI(2) and VEGF compared to control medium (5 mmol/L glucose). Moreover, high glucose was also observed to decrease the activity of SOD in late EPCs. These results suggest that hyperglycaemia-induced impairment of late EPC secretion functions could contribute to the development of vascular disease in diabetes.


Assuntos
Células Endoteliais/metabolismo , Hiperglicemia/metabolismo , Células-Tronco/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Epoprostenol/metabolismo , Glucose/efeitos adversos , Óxido Nítrico/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA