Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Front Med (Lausanne) ; 11: 1414794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854666

RESUMO

Background: Postoperative acute kidney injury (AKI) is a serious and distressing complication connected to various adverse outcomes following the surgical operation. Controversy remains regarding the dexmedetomidine's preventive impact on postoperative AKI. Therefore, this investigation aims to explore the efficiency and safety of dexmedetomidine in preventing AKI after surgical operation. Methods: We systematically searched electronic databases such as PubMed, Embase, Web of Science, and the Cochrane Library to detect eligible randomized controlled studies that used dexmedetomidine for the prevention of AKI following operation up to April 30, 2023. The main outcome evaluated was AKI incidence. The evidence quality was assessed employing the Grading of Recommendations Assessment, Development, and Evaluation. Results: The meta-analysis included 25 trials, including 3,997 individuals. Of these, 2,028 were in the dexmedetomidine group, and 1,969 were in the control group. The result showed that patients administered dexmedetomidine significantly decreased the AKI incidence following surgical operation in contrast to the control group (risk ratio, 0.60; 95% confidence intervals, 0.45-0.78; p < 0.05; I 2 = 46%). In addition, dexmedetomidine decreased the period of hospitalization in both the intensive care unit (ICU) and the hospital while also reducing postoperative delirium (POD) occurrence. However, dexmedetomidine elevated the incidence of bradycardia but did not have a significant impact on other indicators. Conclusion: Our meta-analysis indicates that the dexmedetomidine treatment reduces the postoperative AKI and POD risk while also shortening the time of hospitalization in the ICU and hospital. However, it is connected to an increased bradycardia risk.

2.
Ecotoxicol Environ Saf ; 280: 116536, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833983

RESUMO

The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.

3.
Mycorrhiza ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836935

RESUMO

Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.

4.
World J Gastrointest Oncol ; 16(5): 2091-2112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764846

RESUMO

BACKGROUND: For the first time, we investigated the oncological role of plexin domain-containing 1 (PLXDC1), also known as tumor endothelial marker 7 (TEM7), in hepatocellular carcinoma (HCC). AIM: To investigate the oncological profile of PLXDC1 in HCC. METHODS: Based on The Cancer Genome Atlas database, we analyzed the expression of PLXDC1 in HCC. Using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, we validated our results. The prognostic value of PLXDC1 in HCC was analyzed by assessing its correlation with clinicopathological features, such as patient survival, methylation level, tumor immune microenvironment features, and immune cell surface checkpoint expression. Finally, to assess the immune evasion potential of PLXDC1 in HCC, we used the tumor immune dysfunction and exclusion (TIDE) website and immunohistochemical staining assays. RESULTS: Based on immunohistochemistry, qRT-PCR, and Western blot assays, overexpression of PLXDC1 in HCC was associated with poor prognosis. Univariate and multivariate Cox analyses indicated that PLXDC1 might be an independent prognostic factor. In HCC patients with high methylation levels, the prognosis was worse than in patients with low methylation levels. Pathway enrichment analysis of HCC tissues indicated that genes upregulated in the high-PLXDC1 subgroup were enriched in mesenchymal and immune activation signaling, and TIDE assessment showed that the risk of immune evasion was significantly higher in the high-PLXDC1 subgroup compared to the low-PLXDC1 subgroup. The high-risk group had a significantly lower immune evasion rate as well as a poor prognosis, and PLXDC1-related risk scores were also associated with a poor prognosis. CONCLUSION: As a result of this study analyzing PLXDC1 from multiple biological perspectives, it was revealed that it is a biomarker of poor prognosis for HCC patients, and that it plays a role in determining immune evasion status.

5.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732459

RESUMO

Arbuscular mycorrhizal (AM) fungi can establish a mutualistic relationship with the roots of most terrestrial plants to increase plant nutrient uptake. The effects of potassium uptake and transport by AM symbiosis are much less reported compared to other nutrients. In this research, a heterologous yeast system was used to verify that the LbHAK has capacity for potassium uptake. The split-roots system implemented using seedlings of Lycium barbarum confirmed that R. irregularis locally induced LbHAK expression, which means that LbHAK is only expressed in mycorrhizal roots. Furthermore, the impacts of overexpression of LbHAK on the growth, nutrients and water uptake, and transport of mycorrhizal tobacco (inoculation with Rhizophagus irregularis) at 0.2 mM and 2 mM K conditions were assessed. The mycorrhizal tobacco growth and potassium accumulation were significantly enhanced through LbHAK overexpression in tobacco. In addition, overexpression of LbHAK substantially enhanced phosphorus content, while stimulating the expression of NtPT4, Rir-AQP1, and Rir-AQP2 in mycorrhizal tobacco. Moreover, LbHAK overexpression greatly promoted AM colonization. LbHAK has a potential role in facilitating potassium absorption through the mycorrhizal pathway, and overexpression of LbHAK in tobacco may promote the transport of potassium, phosphorus, and water from AM fungi to tobacco. These data imply the important roles played by the LbHAK in AM-fungi-induced potassium uptake in L. barbarum and in improving plant nutrients and AM colonization.

6.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697011

RESUMO

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeos Semelhantes ao Glucagon , Glucose , Fragmentos Fc das Imunoglobulinas , Dinâmica Mitocondrial , Proteínas Recombinantes de Fusão , Sirtuína 1 , Animais , Fragmentos Fc das Imunoglobulinas/farmacologia , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Sirtuína 1/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Camundongos , Glucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Humanos , Isquemia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/patologia
7.
Stem Cells ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804841

RESUMO

Cisplatin is widely employed in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor (TNF)-α-stimulated gene/protein 6 (rhTSG-6), or PBS through tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. hBM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen (BUN), tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, knockdown of TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviate cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.

8.
EBioMedicine ; 104: 105171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810562

RESUMO

BACKGROUND: The increasing volume and intricacy of sequencing data, along with other clinical and diagnostic data, like drug responses and measurable residual disease, creates challenges for efficient clinical comprehension and interpretation. Using paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) as a use case, we present an artificial intelligence (AI)-assisted clinical framework clinALL that integrates genomic and clinical data into a user-friendly interface to support routine diagnostics and reveal translational insights for hematologic neoplasia. METHODS: We performed targeted RNA sequencing in 1365 cases with haematological neoplasms, primarily paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) from the AIEOP-BFM ALL study. We carried out fluorescence in situ hybridization (FISH), karyotyping and arrayCGH as part of the routine diagnostics. The analysis results of these assays as well as additional clinical information were integrated into an interactive web interface using Bokeh, where the main graph is based on Uniform Manifold Approximation and Projection (UMAP) analysis of the gene expression data. At the backend of the clinALL, we built both shallow machine learning models and a deep neural network using Scikit-learn and PyTorch respectively. FINDINGS: By applying clinALL, 78% of undetermined patients under the current diagnostic protocol were stratified, and ambiguous cases were investigated. Translational insights were discovered, including IKZF1plus status dependent subpopulations of BCR::ABL1 positive patients, and a subpopulation within ETV6::RUNX1 positive patients that has a high relapse frequency. Our best machine learning models, LDA and PASNET-like neural network models, achieve F1 scores above 97% in predicting patients' subgroups. INTERPRETATION: An AI-assisted clinical framework that integrates both genomic and clinical data can take full advantage of the available data, improve point-of-care decision-making and reveal clinically relevant insights promptly. Such a lightweight and easily transferable framework works for both whole transcriptome data as well as the cost-effective targeted RNA-seq, enabling efficient and equitable delivery of personalized medicine in small clinics in developing countries. FUNDING: German Ministry of Education and Research (BMBF), German Research Foundation (DFG) and Foundation for Polish Science.


Assuntos
Inteligência Artificial , Pesquisa Translacional Biomédica , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Biologia Computacional/métodos , Criança , Hibridização in Situ Fluorescente/métodos , Feminino , Masculino , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos
9.
J Med Chem ; 67(9): 7516-7538, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686671

RESUMO

The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.


Assuntos
Desenho de Fármacos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Camundongos , Relação Estrutura-Atividade , Interleucina-1beta/metabolismo , Células THP-1 , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos Endogâmicos C57BL
10.
Am J Pathol ; 194(7): 1346-1373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631549

RESUMO

Because the mechanotransduction by stromal stiffness stimulates the rupture and repair of the nuclear envelope in pancreatic progenitor cells, accumulated genomic aberrations are under selection in the tumor microenvironment. Analysis of cell growth, micronuclei, and phosphorylated Ser-139 residue of the histone variant H2AX (γH2AX) foci linked to mechanotransduction pressure in vivo during serial orthotopic passages of mouse KrasLSL-G12D/+;Trp53flox/flox;Pdx1-Cre (KPC) cancer cells in the tumor and in migrating through the size-restricted 3-µm micropores. To search for pancreatic cancer cell-of-origin, analysis of single-cell data sets revealed that the extracellular matrix shaped an alternate route of acinar-ductal transdifferentiation of acinar cells into topoisomerase II α (TOP2A)-overexpressing cancer cells and derived subclusters with copy number amplifications in MYC-PTK2 (protein tyrosine kinase 2) locus and PIK3CA. High-PTK2 expression is associated with 171 differentially methylated CpG loci, 319 differentially expressed genes, and poor overall survival in The Cancer Genome Atlas-Pancreatic Adenocarcinoma cohort. Abolished RGD-integrin signaling by disintegrin KG blocked the PTK2 phosphorylation, increased cancer apoptosis, decreased vav guanine nucleotide exchange factor 1 (VAV1) expression, and prolonged overall survival in the KPC mice. Reduction of α-smooth muscle actin deposition in the CD248 knockout KPC mice remodeled the tissue stroma and down-regulated TOP2A expression in the epithelium. In summary, stromal stiffness induced the onset of cancer cells-of-origin by ectopic TOP2A expression, and the genomic amplification of MYC-PTK2 locus via alternative transdifferentiation of pancreatic progenitor cells is the vulnerability useful for disintegrin KG treatment.


Assuntos
Instabilidade Cromossômica , Progressão da Doença , Neoplasias Pancreáticas , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Humanos , Carcinoma in Situ/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral , Mecanotransdução Celular , Quinase 1 de Adesão Focal
11.
Br J Dermatol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655652

RESUMO

OBJECTIVE: Psoriasis is a common, chronic inflammatory disease with unclear etiology. Keratinocytes in psoriasis are susceptible to exogenous triggers that induce inflammatory cell death. This study investigated whether GSDME-mediated pyroptosis in keratinocytes contributes to the pathogenesis of psoriasis. METHODS: Skin samples from patients with psoriasis and healthy controls were collected to evaluate the expression of GSDME, cleaved-caspase-3, and inflammatory factors. We then analyzed the data series, GSE41662, to further compare the expression of GSDME between lesional and non-lesional skin samples in those with psoriasis. In vivo, caspase-3 inhibitor and GSDME deficiency mice (Gsdme-/-) were applied to block caspase-3/GSDME activation in the imiquimod-induced psoriasis model. Skin inflammation, disease severity, and pyroptosis-related proteins were analyzed. In vitro, tumor necrosis factor-α (TNF-α)-induced caspase-3/GSDME-mediated pyroptosis in the HACAT cell line was explored. RESULTS: Our analysis of the GSE41662 data series found that GSDME were upregulated in psoriasis lesions, compared to normal skin. High levels of inflammatory cytokines such as IL-1ß, IL-6, and TNF-α were also found in psoriasis lesions. In mice of Gsdme-/- and caspase-3 inhibitor groups, the severity of skin inflammation was attenuated, and GSDME and C-caspase-3 levels decreased after imiquimod treatment. Similarly, IL-1ß, IL-6, and TNF-α were decreased in Gsdme-/- and caspase-3 inhibitor groups. In vitro, TNF-α induced HACAT cell pyroptosis through caspase-3/GSDME pathway activation, which was suppressed by blocking caspase-3 or silencing GSDME. CONCLUSION: Our study provides a novel explanation that TNF-α/caspase-3/GSDME-mediated keratinocyte pyroptosis is highly responsible for the initiation and acceleration of skin inflammation and progression of psoriasis.

12.
World J Gastrointest Oncol ; 16(2): 436-457, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425388

RESUMO

BACKGROUND: A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM: To investigate the disease relevance of COVID-19 in liver cancer. METHODS: Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS: Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION: Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.

13.
Huan Jing Ke Xue ; 45(2): 909-919, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471929

RESUMO

Based on the typical city survey data and statistics of Guangdong Province, a 2018-based 3 km×3 km gridded greenhouse gas emissions inventory was developed for Guangdong Province using the combination of top-down and bottom-up emission factor methods. The inventory covered the CO2, CH4, and N2O emissions from energy, industrial processes, agriculture, land use change and forest, waste management, and indirect sources. The results showed that estimates for CO2, CH4, and N2O in Guangdong Province for the year 2018 were 8.5×108, 1.9×106, and 1.1×105 t, respectively, and 8.5×108, 4.0×107, and 3.4×107 t by equivalent carbon dioxide, totaling 9.2×108 t. CO2 was the main greenhouse gas in Guangdong Province, accounting for 92.0% of the total emissions. Energy and indirect sources were the main emission sources, accounting for 77.9% and 7.6%, respectively, totaling 85.5%. Spatial distributions illustrated that most grids were greenhouse gas emissions, whereas some others were greenhouse gas sinks; the greenhouse gas emissions were distributed mainly in the Pearl River Delta region and had certain characteristics of distribution along the road network and channels. The greenhouse gas grids of high emission were mainly the locations of high energy-consuming enterprises such as large power plants, steel mills, and cement plants.

14.
Risk Manag Healthc Policy ; 17: 689-699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544530

RESUMO

Purpose: To develop an individualized predictive model for postoperative recurrent lumbar disc herniation (PRLDH) in patients undergoing percutaneous endoscopic transforaminal discectomy (PETD) by considering postoperative activity factors. Patients and Methods: Retrospectively collected data from 612 LDH patients who underwent PETD in our institution from January 2017 to June 2023. They were divided into a training group (429 cases) and a validation group (183 cases). Lasso regression (Model 1) and random forest (Model 2) were applied for variable selection in the training group. The two models were compared in terms of discrimination (the area under curve, AUC), calibration (calibration curve), and clinical utility (decision curve analysis, DCA). Akaike information criterion (AIC) was used for model comparison, and internal validation employed 1000 times Bootstrap + 10-fold cross-validation. Finally, a Nomogram was constructed to display the results and uploaded to the web version. Results: Among 612 treated LDH patients, 66 (10.78%) developed PRLDH. Model 1, superior in AUC, calibration, DCA, and AIC over Model 2, was chosen as the predictive model. Logistic regression in the training group identified BMI, smoking, activity level score, time to first ambulation, diabetes, Modic change, and Pfirrmann grade as independent predictors of PRLDH. Model 1 exhibited a training group AUC of 0.813 (95% CI 0.753-0.872) and a validation group AUC of 0.868 (95% CI 0.773-0.962). At a Youden index of 0.50, sensitivity was 0.73, specificity was 0.77. Internal validation (1000 times Bootstrap + 10-fold cross-validation) for the training group showed accuracy of 0.889, kappa consistency of 0.112, and AUC of 0.757. The Hosmer-Lemeshow goodness-of-fit tests indicated good discriminative ability for Model 1 in both the training (χ2=2.895, P=0.941) and validation groups (χ2=8.197, P=0.414). The DCA and Nomogram are accessible at https://sofarnomogram.shinyapps.io/PRLDHNom/. Conclusion: The Nomogram predictive model, developed based on postoperative activity factors in this study, demonstrates excellent predictive capability, facilitating risk assessment for the occurrence of PRLDH after PETD.

15.
Heliyon ; 10(6): e27840, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545139

RESUMO

Background: In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The ß-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods: Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of ß-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results: Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and ß-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of ß-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/ß-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with ß-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion: Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the ß-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38551431

RESUMO

Objective: The objective of this study was to evaluate the effects of comfort care on perioperative outcomes and postoperative recovery of breast cancer patients. Evaluating comfort care is important in the context of breast cancer surgery because it can potentially alleviate pain, improve patient comfort, enhance postoperative recovery, and reduce complications, ultimately leading to better patient outcomes. Methods: Between March 2020 and December 2021, 78 patients undergoing breast cancer surgery at our hospital were randomly assigned to receive either routine nursing (routine group) or comfort care (experimental group). The comfort care intervention included various components such as health education, preoperative care, intraoperative care, postoperative care, pain care, and psychological care. The routine group received standard nursing care following medical advice. Results: The patient characteristics between the two groups were comparable. Comfort care resulted in significantly higher visual analog scale (VAS) scores, indicating reduced pain, and better improvement in functional recovery of the upper limb compared to routine nursing. Comfort care was also associated with better postoperative recovery, as evidenced by lower self-rating depression scale (SDS) and self-rating anxiety scale (SAS) scores. The experimental group had a significantly lower incidence of complications compared to the routine group. Additionally, the experimental group reported better 24-hour comfort and higher nursing satisfaction. Conclusion: In conclusion, comfort care effectively reduces postoperative pain, promotes postoperative recovery, improves patient emotions, lowers the incidence of complications, and enhances comfort and care satisfaction in breast cancer patients undergoing radical surgery. These findings highlight the importance of incorporating comfort care interventions in the perioperative management of breast cancer patients. Further research and implementation of comfort care strategies may have implications for improving clinical practice and patient outcomes in the future.

17.
Cell Rep ; 43(2): 113779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358891

RESUMO

R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.


Assuntos
Adenina/análogos & derivados , Estruturas R-Loop , RNA , Ribonuclease H , Humanos , Instabilidade Genômica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Metiltransferases/genética
18.
Proc Natl Acad Sci U S A ; 121(9): e2315894121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377213

RESUMO

The intricate interplay between biomechanical and biochemical pathways in modulating morphogenesis is an interesting research topic. How biomechanical force regulates epithelial cell tubulogenesis remains poorly understood. Here, we established a model of tubulogenesis by culturing renal proximal tubular epithelial cells on a collagen gel while manipulating contractile force. Epithelial cells were dynamically self-organized into tubule-like structures by augmentation of cell protrusions and cell-cell association. Reduction and asymmetric distribution of phosphorylated myosin light chain 2, the actomyosin contractility, in cells grown on soft matrix preceded tube connection. Notably, reducing matrix stiffness via sonication of collagen fibrils and inhibiting actomyosin contractility with blebbistatin promoted tubulogenesis, whereas inhibition of cytoskeleton polymerization suppressed it. CXC chemokine ligand 1 (CXCL1) expression was transcriptionally upregulated in cells undergoing tubulogenesis. Additionally, inhibiting actomyosin contractility facilitated CXCL1 polarization and cell protrusions preceding tube formation. Conversely, inhibiting the CXCL1-CXC receptor 1 pathway hindered cell protrusions and tubulogenesis. Mechanical property asymmetry with cell-collagen fibril interaction patterns at cell protrusions and along the tube structure supported the association of anisotropic contraction with tube formation. Furthermore, suppressing the mechanosensing machinery of integrin subunit beta 1 reduced CXCL1 expression, collagen remodeling, and impaired tubulogenesis. In summary, symmetry breaking of cell contractility on a soft collagen gel promotes CXCL1 polarization at cell protrusions which in turn facilitates cell-cell association and thus tubule connection.


Assuntos
Actomiosina , Colágeno , Actomiosina/metabolismo , Matriz Extracelular/metabolismo , Morfogênese , Células Epiteliais/metabolismo
19.
J Transl Med ; 22(1): 190, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383458

RESUMO

BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Biomarcadores Tumorais
20.
Aging Dis ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38377027

RESUMO

Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA