Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310851

RESUMO

INTRODUCTION: Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long, the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. METHODS: Cushion needles with different pipe diameters (1.0, 1.2, 1.4 and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after two weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson's trichrome staining, Verhoeff's Van Gieson staining and hematoxylin and eosin staining while RT-PCR were utilized to assess the total RNA of cytokine interleukin-1ß, interleukin 6, transforming growth factor-beta1 and metalloproteinase 2. RESULTS: Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. CONCLUSIONS: The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms in ascending aortic aneurysm in a more clinically relevant fashion.

3.
Int Immunopharmacol ; 121: 110350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290325

RESUMO

The use of aspirin is associated with reduced incidence of colorectal cancer (CRC). However, the detailed mechanism remains unclear. In this study, we reported that colon cancer cells treated with aspirin showed the hallmarks of immunogenic cell death (ICD), including surface expression of calreticulin (CRT) and heat shock protein 70 (HSP70). Mechanistically, aspirin induced endoplasmic reticulum (ER) stress in colon cancer cells. In addition, aspirin decreased the expression of the glucose transporters, GLUT3, and reduced the key enzyme of glycolysis, including HK2, PFKM, PKM2 and LDHA. The changes of tumor glycolysis after aspirin treatment were associated with c-MYC downregulation. Moreover, aspirin potentiated the antitumor efficacy of anti-PD-1 antibody and anti-CTLA-4 antibody in CT26 tumors. However, this antitumor activity of aspirin in combination with anti-PD-1 antibody was abolished by the depletion of CD8+ T cells. Vaccination with tumor antigens is one of the strategies for activating T-cell response against tumors. Here, we demonstrated that aspirin-treated tumor cells in combination with tumor antigens (AH1 peptide) or protective substituted peptide (A5 peptide) could be served as a potent vaccine to eradicate tumors. Overall, our data indicated that aspirin can be used as an inducer of ICD for CRC therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias do Colo , Humanos , Linhagem Celular Tumoral , Morte Celular Imunogênica , Antígenos de Neoplasias , Imunoterapia
4.
Anal Bioanal Chem ; 415(18): 4061-4077, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119357

RESUMO

Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.


Assuntos
Carboidratos , Nanopartículas , Fluorescência , Carboidratos/química , Sondas Moleculares
5.
Autophagy ; 19(1): 75-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471096

RESUMO

Aminoglycosides exhibit ototoxicity by damaging mitochondria, which in turn generate reactive oxygen species that induce hair cell death and subsequent hearing loss. It is well known that damaged mitochondria are degraded by mitophagy, an important mitochondrial quality control system that maintains mitochondrial homeostasis and ensures cell survival. However, it is unclear whether dysregulation of mitophagy contributes to aminoglycoside-induced hair cell injury. In the current study, we found that PINK1-PRKN-mediated mitophagy was impaired in neomycin-treated hair cells. Our data suggested that mitochondrial recruitment of PRKN and phagophore recognition of damaged mitochondria during mitophagy were blocked following neomycin treatment. In addition, the degradation of damaged mitochondria by lysosomes was significantly decreased as indicated by the mitophagic flux reporter mt-mKeima. Moreover, we demonstrated that neomycin disrupted mitophagy through transcriptional inhibition of Pink1 expression, the key initiator of mitophagy. Moreover, we found that neomycin impaired mitophagy by inducing ATF3 expression. Importantly, treatment with a mitophagy activator could rescue neomycin-treated hair cells by increasing mitophagy, indicating that genetic modulation or drug intervention in mitophagy may have therapeutic potential for aminoglycoside-induced hearing loss.Abbreviations: AAV: adeno-associated virus; ABR: auditory brainstem response; ATF3: activating transcription factor 3; ATOH1/MATH1: atonal bHLH transcription factor 1; BafA1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; COX4I1/COXIV: cytochrome c oxidase subunit 4I1; CTBP2/RIBEYE: C-terminal binding protein 2; DFP: deferiprone; EGFP: enhanced green fluorescent protein; FOXO3: forkhead box O3; GRIA2/GLUR2: glutamate receptor, ionotropic, AMPA2 (alpha 2); HC: hair cell; HSPD1/HSP60: heat shock protein 1 (chaperonin); IHC: inner hair cell; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MYO7A: myosin VIIA; OPTN: optineurin; OMM: outer mitochondrial membrane; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RT-qPCR: real-time quantitative polymerase chain reaction; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling; USP30: ubiquitin specific peptidase 30; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Mitofagia , Mitofagia/genética , Aminoglicosídeos/toxicidade , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antibacterianos/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas
6.
Nat Commun ; 13(1): 360, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042897

RESUMO

Human 53BP1 is primarily known as a key player in regulating DNA double strand break (DSB) repair choice; however, its involvement in other biological process is less well understood. Here, we report a previously uncharacterized function of 53BP1 at heterochromatin, where it undergoes liquid-liquid phase separation (LLPS) with the heterochromatin protein HP1α in a mutually dependent manner. Deletion of 53BP1 results in a reduction in heterochromatin centers and the de-repression of heterochromatic tandem repetitive DNA. We identify domains and residues of 53BP1 required for its LLPS, which overlap with, but are distinct from, those involved in DSB repair. Further, 53BP1 mutants deficient in DSB repair, but proficient in LLPS, rescue heterochromatin de-repression and protect cells from stress-induced DNA damage and senescence. Our study suggests that in addition to DSB repair modulation, 53BP1 contributes to the maintenance of heterochromatin integrity and genome stability through LLPS.


Assuntos
Heterocromatina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Homólogo 5 da Proteína Cromobox/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Mutação/genética , Domínios Proteicos , Estresse Fisiológico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química
7.
Anal Chem ; 93(48): 16113-16122, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34841853

RESUMO

Discerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change. Such a recognition effect allows for the nanochannel to work in a complex protein digest condition. Further, the implementation of nanofluidic logic functions with the addition of Ca2+ dramatically improves the selectivity of the nanochannel to pY peptide and thus can discern pTyr by the Tyr kinase from pSer by the Ser/Thr kinase through simultaneously monitoring multisite phosphorylation at the same or different peptide substrates in one-pot. This logic sensing platform displays the potential in differentiating Tyr kinase and Ser/Thr kinase and assessing multi-kinase activities in multi-targeted drug design.


Assuntos
Processamento de Proteína Pós-Traducional , Treonina , Fosforilação , Fosfotirosina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
8.
J Mater Chem B ; 9(37): 7793-7804, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586130

RESUMO

Cochlear implantation is considered to be the best therapeutic method for profound sensorineural hearing loss, but insufficient numbers of functional spiral ganglion neurons hinder the clinical effects of cochlear implantation. Stem cell transplantation has the potential to provide novel strategies for spiral ganglion neuron regeneration after injury. However, some obstacles still need to be overcome, such as low survival and uncontrolled differentiation. Several novel technologies show promise for modulating neural stem cell behaviors to address these issues. Here, a device capable of electrical stimulation was designed by combining a cochlear implant with a graphene substrate. Neural stem cells (NSCs) were cultured on the graphene substrate and subjected to electrical stimulation transduced from sound waves detected by the cochlear implant. Cell behaviors were studied, and this device showed good biocompatibility for NSCs. More importantly, electric-acoustic stimulation with higher frequencies and amplitudes induced NSC death and apoptosis, and electric-acoustic stimulation could promote NSCs to proliferate and differentiate into neurons only when low-frequency stimulation was supplied. The present study provides experimental evidence for understanding the regulatory role of electric-acoustic stimulation on NSCs and highlights the potentials of the above-mentioned device in stem cell therapy for hearing loss treatment.


Assuntos
Estimulação Acústica , Implantes Cocleares , Estimulação Elétrica , Neurônios/fisiologia , Regeneração , Animais , Apoptose , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Grafite/química , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos da radiação
9.
Int J Nanomedicine ; 16: 6097-6113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511908

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely investigated and applied in the field of biomedicine due to their excellent superparamagnetic properties and reliable traceability. However, with the optimization of core composition, shell types and transfection agents, the cytotoxicity and metabolism of different SPIONs have great differences, and the labeled cells also show different cellular behaviors. Therefore, a holistic review of the construction and application of SPIONs is desired. This review focuses the advances of SPIONs in the field of biomedicine in recent years. After summarizing the toxicity of different SPIONs, the uptake, distribution and metabolism of SPIONs in vitro were discussed. Then, the regulation of labeled-cells behavior is outlined. Furthermore, the major challenges in the optimization process of SPIONs and insights on its future developments are proposed.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/efeitos adversos
10.
Am J Transl Res ; 13(7): 8172-8178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377302

RESUMO

BACKGROUND: Superior mesenteric arteriovenous fistula (SMAVF) is a very rare disease and mainly manifests as abdominal pain, diarrhea, anorexia, and other portal hypertension symptoms. The diagnosis of the disease mainly relies on abdominal enhanced CT+3D reconstruction or digital subtraction angiography, and the treatment is mainly vascular interventional fistula occlusion. CASE SUMMARY: a 17-year-old female with a history of abdominal trauma and surgery was admitted to our hospital for diarrhea and abdominal distension. The patient was diagnosed with a superior mesenteric arteriovenous fistula after abdominal enhanced CT + 3D reconstruction. The patient was satisfied with the results after the superior mesenteric artery angiography + covered stent implantation. No discomfort symptoms occurred during the two-year follow-up. CONCLUSION: A history of abdominal trauma or surgery and clinical manifestations in combination with a radiological analysis are important indicators in the diagnosis of SMAVF. Interventional therapy is the preferred treatment.

11.
Int J Nanomedicine ; 16: 4515-4526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239302

RESUMO

INTRODUCTION: Neuroregeneration is a major challenge in neuroscience for treating degenerative diseases and for repairing injured nerves. Numerous studies have shown the importance of physical stimulation for neuronal growth and development, and here we report an approach for the physical guidance of neuron orientation and neurite growth using superparamagnetic iron oxide (SPIO) nanoparticles and magnetic fields (MFs). METHODS: SPIO nanoparticles were synthesized by classic chemical co-precipitation methods and then characterized by transmission electron microscope, dynamic light scattering, and vibrating sample magnetometer. The cytotoxicity of the prepared SPIO nanoparticles and MF was determined using CCK-8 assay and LIVE/DEAD assay. The immunofluorescence images were captured by a laser scanning confocal microscopy. Cell migration was evaluated using the wound healing assay. RESULTS: The prepared SPIO nanoparticles showed a narrow size distribution, low cytotoxicity, and superparamagnetism. SPIO nanoparticles coated with poly-L-lysine could be internalized by spiral ganglion neurons (SGNs) and showed no cytotoxicity at concentrations less than 300 µg/mL. The neurite extension of SGNs was promoted after internalizing SPIO nanoparticles with or without an external MF, and this might be due to the promotion of growth cone development. It was also confirmed that SPIO can regulate cell migration and can direct neurite outgrowth in SGNs preferentially along the direction imposed by an external MF. CONCLUSION: Our results provide a fundamental understanding of the regulation of cell behaviors under physical cues and suggest alternative treatments for sensorineural hearing loss caused by the degeneration of SGNs.


Assuntos
Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Gânglio Espiral da Cóclea/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos
12.
Front Cell Neurosci ; 15: 815280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185472

RESUMO

Neural stem cells (NSCs) transplantation is a promising approach for the treatment of various neurodegenerative diseases. Superparamagnetic iron oxide nanoparticles (SPIOs) are reported to modulate stem cell behaviors and are used for medical imaging. However, the detailed effects of SPIOs under the presence of static magnetic field (SMF) on NSCs are not well elucidated. In this study, it was found that SPIOs could enter the cells within 24 h, while they were mainly distributed in the lysosomes. SPIO exhibited good adhesion and excellent biocompatibility at concentrations below 500 µg/ml. In addition, SPIOs were able to promote NSC proliferation in the absence of SMF. In contrast, the high intensity of SMF (145 ± 10 mT) inhibited the expansion ability of NSCs. Our results demonstrate that SPIOs with SMF could promote NSC proliferation, which could have profound significance for tissue engineering and regenerative medicine for SPIO applications.

13.
J Am Chem Soc ; 142(38): 16324-16333, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32894673

RESUMO

Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.


Assuntos
Nanotecnologia , Tirosina/metabolismo , Estrutura Molecular , Fosforilação , Tirosina/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-32582658

RESUMO

Exosomes are nanoscale membrane-enclosed vesicles 30-150 nm in diameter that are originated from a number of type cells by the endocytic pathway and consist of proteins, lipids, RNA, and DNA. Although, exosomes were initially considered to be cellular waste, they have gradually been recognized to join in cell-cell communication and cell signal transmission. In addition, exosomal contents can be applied as biomarkers for clinical judgment and exosomes can as potential carriers in a novel drug delivery system. Unfortunately, purification methods of exosomes remain an obstacle. We described some common purification methods and highlight Morpho Menelaus (M. Menelaus) butterfly wings can be developed as efficient methods for exosome isolation. Furthermore, the current research on exosomes mainly focused on their roles in cancer, while related studies on exosomes in the visual and auditory systems are limited. Here we reviewed the biogenesis and contents of exosomes. And more importantly, we summarized the roles of exosomes and provided prospective for exosome research in the visual and auditory systems.

15.
Autophagy ; 16(3): 419-434, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31177901

RESUMO

Mitophagy, which is a conserved cellular process for selectively removing damaged or unwanted mitochondria, is critical for mitochondrial quality control and the maintenance of normal cellular physiology. However, the precise mechanisms underlying mitophagy remain largely unknown. Prior studies on mitophagy focused on the events in the mitochondrial outer membrane. PHB2 (prohibitin 2), which is a highly conserved membrane scaffold protein, was recently identified as a novel inner membrane mitophagy receptor that mediates mitophagy. Here, we report a new signaling pathway for PHB2-mediated mitophagy. Upon mitochondrial membrane depolarization or misfolded protein aggregation, PHB2 depletion destabilizes PINK1 in the mitochondria, which blocks the mitochondrial recruitment of PRKN/Parkin, ubiquitin and OPTN (optineurin), leading to an inhibition of mitophagy. In addition, PHB2 overexpression directly induces PRKN recruitment to the mitochondria. Moreover, PHB2-mediated mitophagy is dependent on the mitochondrial inner membrane protease PARL, which interacts with PHB2 and is activated upon PHB2 depletion. Furthermore, PGAM5, which is processed by PARL, participates in PHB2-mediated PINK1 stabilization. Finally, a ligand of PHB proteins that we synthesized, called FL3, was found to strongly inhibit PHB2-mediated mitophagy and to effectively block cancer cell growth and energy production at nanomolar concentrations. Thus, our findings reveal that the PHB2-PARL-PGAM5-PINK1 axis is a novel pathway of PHB2-mediated mitophagy and that targeting PHB2 with the chemical compound FL3 is a promising strategy for cancer therapy.Abbreviations: AIFM1: apoptosis inducing factor mitochondria associated 1; ATP5F1A/ATP5A1: ATP synthase F1 subunit alpha; BAF: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: chemical reagent carbonyl cyanide m-chlorophenyl hydrazine; FL3: flavaglines compound 3; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; LC3B/MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryo fibroblasts; MPP: mitochondrial-processing peptidase; MT-CO2/COX2: mitochondrially encoded cytochrome c oxidase II; MTS: mitochondrial targeting sequence; OA: oligomycin and antimycin A; OPTN: optineurin; OTC: ornithine carbamoyltransferase; PARL: presenilin associated rhomboid like; PBS: phosphate-buffered saline; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PHB: prohibitin; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; Roc-A: rocaglamide A; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I.


Assuntos
Metaloproteases/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HCT116 , Células HeLa , Humanos , Ligantes , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proibitinas , Ligação Proteica , Estabilidade Proteica , Transdução de Sinais
16.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675497

RESUMO

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Encefalopatias Metabólicas/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/genética , Ansiedade/imunologia , Ansiedade/fisiopatologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/fisiopatologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Dinâmica Mitocondrial/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise de Célula Única , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Transcriptoma/genética , Xantina/metabolismo
17.
Am J Transl Res ; 11(6): 3246-3260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312342

RESUMO

Graphene-based nanocomposites have attracted more and more attention recently in the field of biology and biomedicine. Graphene and its derivatives have been integrated with drugs, nucleic acids, antibodies, and other molecules. And these materials could be use as nanocomposite carriers or scaffold materials taking advantages of their enormous specific surface area, good elasticity and ductility, excellent biocompatibility, and outstanding mechanical strength. In addition, these composites have strong near-infrared absorbance and can act as photothermal agents to kill target cells through physical or chemical mechanisms. Along with significant advances in cell and organ transplantation, many of these materials have been explored in recent years for use in tissue engineering and regenerative medicine. Tissue engineering includes bone, nerve, heart, and muscle tissue engineering based on two-dimensional and three-dimensional graphene-based matrices or scaffolds possessing certain mechanical strengths and electrical conductivities, and the aim is to produce bioactive tissues to replace or repair natural tissue by promoting osteogenic, neuronal, and myogenic differentiation and myocardial cell growth. In this review, the basic properties of graphene-based complexes are systematically described and the biomedical applications of graphene-based materials in vivo and in vitro are summarized. This review first discusses the safety of graphene-based materials in terms of their biocompatibility and toxicity, and then it discusses these materials' applications in biosensing, photothermal therapy, stem cell culture, and tissue engineering. This review therefore provides a comprehensive understanding of graphene and its derivatives and their present and future applications.

18.
Sci Adv ; 5(3): eaau7566, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854428

RESUMO

Polo-like kinase 1 (Plk1) is a crucial regulator of cell cycle progression; but the mechanism of regulation of Plk1 activity is not well understood. We present evidence that Plk1 activity is controlled by a balanced methylation and phosphorylation switch. The methyltransferase G9a monomethylates Plk1 at Lys209, which antagonizes phosphorylation of T210 to inhibit Plk1 activity. We found that the methyl-deficient Plk1 mutant K209A affects DNA replication, whereas the methyl-mimetic Plk1 mutant K209M prolongs metaphase-to-anaphase duration through the inability of sister chromatids separation. We detected accumulation of Plk1 K209me1 when cells were challenged with DNA damage stresses. Ablation of K209me1 delays the timely removal of RPA2 and RAD51 from DNA damage sites, indicating the critical role of K209me1 in guiding the machinery of DNA damage repair. Thus, our study highlights the importance of a methylation-phosphorylation switch of Plk1 in determining its kinase activity and functioning in DNA damage repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Replicação do DNA , Ativação Enzimática , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
19.
Neural Plast ; 2018: 9506387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853854

RESUMO

Deafness is a common human disease, which is mainly caused by irreversible damage to hair cells and spiral ganglion neurons (SGNs) in the mammalian cochlea. At present, replacement of damaged or missing hair cells and SGNs by stem cell transplantation therapy is an effective treatment. However, the survival rate of stem cell transplantation is low, with uncontrollable differentiation hindering its application. Most researchers have focused on biochemical factors to regulate the growth and differentiation of stem cells, whereas little study has been performed using physical factors. This review intends to illustrate the current problems in stem cell-based treatment against deafness and to introduce electric field stimulation as a physical factor to regulate stem cell behavior and facilitate stem cell therapy to treat hearing loss in the future.


Assuntos
Surdez/terapia , Terapia por Estimulação Elétrica/métodos , Transplante de Células-Tronco/métodos , Animais , Terapia Combinada , Surdez/fisiopatologia , Células Ciliadas Auditivas/fisiologia , Humanos , Regeneração/fisiologia
20.
Adv Mater ; 30(17): e1705388, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29450919

RESUMO

Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.


Assuntos
Medicina Regenerativa , Materiais Biocompatíveis , Diferenciação Celular , Células-Tronco , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA