Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35416930

RESUMO

The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.


Assuntos
Actomiosina , Células Epiteliais , Junções Intercelulares , Proteínas dos Microfilamentos , Fibras de Estresse , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras de Estresse/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099568

RESUMO

Cadherins harness the actin cytoskeleton to build cohesive sheets of cells using paradoxically weak bonds, but the molecular mechanisms are poorly understood. In one popular model, actin organizes cadherins into large, micrometer-sized clusters known as puncta. Myosin is thought to pull on these puncta to generate strong adhesion. Here, however, we show that cadherin puncta are actually interdigitated actin microspikes generated by actin polymerization mediated by three factors (Arp2/3, EVL, and CRMP-1). The convoluted membranes in these regions give the impression of cadherin clustering by fluorescence microscopy, but the ratio of cadherin to membrane is constant. Nevertheless, these interlocking fingers of membrane are important for adhesion because perturbing their formation disrupts cell adhesion. In contrast, blocking myosin-dependent contractility does not disrupt either the interdigitated microspikes or lateral membrane adhesion. "Puncta" are zones of strong cell-cell adhesion not due to cadherin clustering but that occur because the interdigitated microspikes expand the surface area available for adhesive bond formation and increase the asperity of the cell surface to promote friction between cells.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Extensões da Superfície Celular/metabolismo , Animais , Adesão Celular , Extensões da Superfície Celular/ultraestrutura , Cães , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Células Madin Darby de Rim Canino , Miosinas/metabolismo , Polimerização
3.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30345009

RESUMO

The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.


Assuntos
Fenômenos Biomecânicos , Adesão Celular/fisiologia , Epitélio/fisiologia , Animais , Extensões da Superfície Celular , Células Epiteliais , Humanos , Contração Muscular
4.
J Cell Sci ; 131(12)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29748378

RESUMO

Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.


Assuntos
Actinina/metabolismo , Caderinas/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Miosina Tipo II/metabolismo , Humanos
5.
J Cell Biol ; 211(2): 407-34, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504173

RESUMO

The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell-cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4-dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and ß-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell-cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.


Assuntos
Actinina/metabolismo , Junções Aderentes/metabolismo , Células Epiteliais/fisiologia , Mecanotransdução Celular , Sinaptofisina/metabolismo , Resistência à Tração , Citoesqueleto de Actina/metabolismo , Actinina/genética , Actinas/metabolismo , Actomiosina/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Miosina Tipo II/metabolismo , Estrutura Terciária de Proteína , Sinaptofisina/genética , Vinculina/metabolismo , beta Catenina/metabolismo
6.
Biophys J ; 84(3): 1660-73, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609869

RESUMO

The tight junction of epithelial cells excludes macromolecules but allows permeation of ions. However, it is not clear whether this ion-conducting property is mediated by aqueous pores or by ion channels. To investigate the permeability properties of the tight junction, we have developed paracellular ion flux assays for four major extracellular ions, Na(+), Cl(-), Ca(2+), and Mg(2+). We found that the tight junction shares biophysical properties with conventional ion channels, including size and charge selectivity, dependency of permeability on ion concentration, competition between permeant molecules, anomalous mole-fraction effects, and sensitivity to pH. Our results support the hypothesis that discrete ion channels are present at the tight junction. Unlike conventional ion channels, which mediate ion transport across lipid bilayers, the tight junction channels must orient parallel to the plane of the plasma membranes to support paracellular ion movements. This new class of paracellular-tight junction channels (PTJC) facilitates the transport of ions between separate extracellular compartments.


Assuntos
Epitélio/fisiologia , Canais Iônicos/fisiologia , Junções Íntimas/fisiologia , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Carcinoma de Células Renais/fisiopatologia , Comunicação Celular/fisiologia , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Cloro/metabolismo , Cães , Epitélio/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/classificação , Canais Iônicos/efeitos dos fármacos , Rim/fisiologia , Neoplasias Renais/fisiopatologia , Magnésio , Potenciais da Membrana/fisiologia , Sódio/metabolismo , Junções Íntimas/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA