Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0000324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353538

RESUMO

The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Autofagia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/metabolismo , Interferons/metabolismo , Microtúbulos/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Suínos , Doenças dos Suínos/virologia
2.
Head Neck ; 46(3): 528-540, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38111234

RESUMO

BACKGROUND: We aimed to unbiasedly map the genetic mutation profile of HNSC and CESC associated with HPV status in the Chinese population (SYSU-cohort) and compare them with Western population (TCGA-cohort). METHODS: Fifty-one HNSC patients (SYSU-HNSC) and 38 CESC patients (SYSU-CESC) were enrolled in this study. Genomic alterations were examined, and the profile was produced using the YuanSuTM450 gene panel (OrigiMed, Shanghai, China). The altered genes were inferred and compared to Western patients from TCGA cohorts. RESULTS: Compared to the TCGA-HNSC cohort, FGFR3 mutation was identified as a novel target in SYSU-HNSC with therapeutic potential. Compared to the TCGA-CESC cohort, some epigenetic regulation-associated genes were frequently mutated in SYSU-CESC cohort (KMT2C, KMT2D, KDM5C, KMT2A). CONCLUSION: In summary, our study provides unbiased insights into the genetic landscape of HNSC and CESC in the Chinese population and highlights potential novel therapeutic targets that may benefit Chinese patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Epigênese Genética , China , Neoplasias de Cabeça e Pescoço/genética , Mutação
3.
Dev Dyn ; 250(4): 527-541, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33165989

RESUMO

BACKGROUND: The hedgehog signaling pathway is critical for developmental patterning of the limb, craniofacial and axial skeleton. Disruption of this pathway in mice leads to a series of structural malformations, but the exact role and critical period of the Hh pathway in the early development of the cranial base have been rarely described. RESULTS: Embryos exposed to vismodegib from E7.5, E9.5, and E10.5 had a higher percentage of cranial base fenestra. The peak incidence of hypoplasia in sphenoid winglets and severe craniosynostosis in cranial base synchondroses was observed when vismodegib was administered between E9.5 and E10.5. Cranial base craniosynostosis results from accelerating terminal differentiation of chondrocytes and premature osteogenesis. CONCLUSIONS: We define the critical periods for the induction of cranial base deformity by vismodegib administration at a meticulous temporal resolution. Our findings suggest that the Hh pathway may play a vital role in the early development of the cranial base. This research also establishes a novel and easy-to-establish mouse model of synostosis in the cranial base using a commercially available pathway-selective inhibitor.


Assuntos
Anormalidades Craniofaciais/etiologia , Proteínas Hedgehog/metabolismo , Base do Crânio/anormalidades , Anilidas , Animais , Anormalidades Craniofaciais/metabolismo , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Masculino , Camundongos Endogâmicos ICR , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA