Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 161(1): 84-100, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34368959

RESUMO

Brain energetics disturbance is a hypothesized cause of depression. Glucose is the predominant fuel of brain energy metabolism; however, the cell-specific change of glucose metabolism and underlying molecular mechanism in depression remains unclear. In this study, we firstly applied 18 F-FDG PET and observed brain glucose hypometabolism in the prefrontal cortex (PFC) of corticosterone-induced depression of rats. Next, astrocytic glucose hypometabolism was identified in PFC slices in both corticosterone-induced depression of rats and cultured primary astrocytes from newborn rat PFC after stress-level corticosterone (100 nM) stimulation. Furthermore, we found the blockage of glucose uptake and the decrease of plasma membrane (PM) translocation of glucose transporter 1 (GLUT1) in astrocytic glucose hypometabolism under depressive condition. Interestingly, thioredoxin interacting protein (TXNIP), a glucose metabolism sensor and controller, was found to be over-expressed in corticosterone-stimulated astrocytes in vivo and in vitro. High TXNIP level could restrict GLUT1-mediated glucose uptake in primary astrocytes in vitro. Adeno-associated virus vector-mediated astrocytic TXNIP over-expression in rat medial PFC suppressed GLUT1 PM translocation, consequently developed depressive-like behavior. Conversely, TXNIP siRNA facilitated GLUT1 PM translocation to recover glucose hypometabolism in corticosterone-exposed cultured astrocytes. Notably, astrocyte-specific knockdown of TXNIP in medial PFC of rats facilitated astrocytic GLUT1 PM translocation, showing obvious antidepressant activity. These findings provide a new astrocytic energetic perspective in the pathogenesis of depression and, more importantly, provide TXNIP as a promising molecular target for novel depression therapy.


Assuntos
Astrócitos , Glucose , Animais , Astrócitos/metabolismo , Proteínas de Ciclo Celular , Corticosterona/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ratos , Tiorredoxinas/metabolismo
2.
Eur J Pharmacol ; 913: 174616, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780752

RESUMO

High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.


Assuntos
Antioxidantes/farmacologia , Frutose/efeitos adversos , Furanos/farmacologia , Podócitos/efeitos dos fármacos , Edulcorantes/efeitos adversos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Podócitos/fisiologia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo
3.
J Biosci Bioeng ; 122(4): 494-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27074949

RESUMO

The effects of culture medium composition (i.e., carbon and nitrogen sources) on the growth of mycelia, molecular weight distribution and antitumor activity of intracellular polysaccharides (IPS) from Cordyceps gunnii were investigated. Sucrose and peptone were proved to be the best carbon and nitrogen sources for mycelia growth and remarkably improved IPS production. When the sucrose concentration was 2.0%, the mycelium yield reached up to 15.94±1.26 g/L, but with lower IPS yield; whereas the sucrose concentration was 4.5%, IPS yield reached to a maximum of 138.78±3.89 mg/100 mL. The effects of different carbon/nitrogen (C/N) ratios with equal amounts of carbon source matter on the mycelia and IPS formation were optimized. It found that the yield of mycelia and IPS were both reached to the highest at a C/N ratio of 10:3. In addition, the IPS had the highest macro molecular polysaccharide content and antitumor activity when sucrose concentration was 3.5% and the C/N ratio was 10:1.5. Thus, there was a positive correlation between molecular weight distribution and antitumor activity of IPS by C. gunnii.


Assuntos
Cordyceps/efeitos dos fármacos , Cordyceps/metabolismo , Meios de Cultura/farmacologia , Polissacarídeos/biossíntese , Polissacarídeos/farmacologia , Carbono/análise , Carbono/metabolismo , Carbono/farmacologia , Cordyceps/crescimento & desenvolvimento , Meios de Cultura/química , Peso Molecular , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Peptonas/metabolismo , Peptonas/farmacologia , Sacarose/metabolismo , Sacarose/farmacologia
4.
Nutrition ; 26(11-12): 1195-200, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20472400

RESUMO

OBJECTIVE: Monoamine oxidase B (MAO-B) levels were observed increasing during aging in rat brains. (-)-Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The objective of the present study was to investigate the EGCG compound for its effect on preventing an increase in MAO-B activity in rat brains. The total antioxidant capacity and lipid peroxidation of rats were also assessed. METHODS: Rats were assigned to three groups: Control, VE (α-tocopherol), and EGCG. Twenty-four male Long-Evans rats were fed normal diets for a total of 11 wk and test diets for a total of 12 wk. The serum analysis, serum total antioxidant capacity, tissue lipid peroxidation, and monoamine oxidase B enzyme activity were measured. The differences between the groups and between the control and experimental groups were analyzed. The correlation among the experimental results was also analyzed. RESULTS: The serum total antioxidant capacity of the EGCG group was higher than that observed in the Control and VE groups. In rat brains and livers, the lipid peroxidation levels were lower in the VE and EGCG groups compared with Control groups. EGCG and VE groups showed lower MAO-B enzyme activity in rat brains compared with Control groups. In contrast to the brain findings, there were no significant differences in the MAO-B enzyme activity among groups in rat livers. CONCLUSION: The present study first indicates that EGCG supplementation was able to execute a tissue-selective decrease in the brain MAO-B enzyme activity in adult rats, in which it was actualized by way of preventing physiological peroxidation.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/uso terapêutico , Encéfalo/enzimologia , Catequina/análogos & derivados , Peroxidação de Lipídeos , Monoaminoxidase/metabolismo , Chá/química , Envelhecimento/sangue , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Catequina/uso terapêutico , Suplementos Nutricionais , Fígado/enzimologia , Fígado/metabolismo , Masculino , Doenças Neurodegenerativas/prevenção & controle , Neurônios/enzimologia , Neurônios/metabolismo , Especificidade de Órgãos , Distribuição Aleatória , Ratos , Ratos Long-Evans , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
Jpn J Clin Oncol ; 40(4): 336-42, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089528

RESUMO

OBJECTIVE: The aims of this study were to detect serum proteomic patterns in gastric cancer serum samples using Surface-enhanced Laser Desorption/ionization-Time-of-flight-Mass Spectrometry ProteinChip array technology, to screen biomarker candidates, to build diagnostic models and to evaluate their clinical significance. METHODS: Serum samples from patients with gastric cancer and normal healthy control subjects (n = 125) were analysed using surface-enhanced laser desorption/ionization technology. The spectra were generated on weak cation exchange (WCX2) chips, and protein peak clustering and classification analyses were established using Ciphergen Biomarker Wizard and Biomarker Pattern software, respectively. The diagnostic models were developed and validated by discriminant analysis. In addition, the results of the surface-enhanced laser desorption/ionization model were compared with the biomarkers carcinoembryonic antigen and carbohydrate antigen 199 in a subset of samples using a microparticle enzyme immunoassay. RESULTS: Five protein peaks at 2046, 3179, 1817, 1725 and 1929 m/z were automatically chosen as components of the best biomarker pattern for diagnosis of gastric cancer. In addition, we identified a single protein peak at 4665 m/z, which could distinguish between stage I/II and stage III/IV gastric cancer with a specificity and sensitivity of 91.6% (11/12) and 95.4% (21/22), respectively. When this biomarker was validated in the second set of samples, the specificity and sensitivity were 91.7% (11/12) and 86.3% (19/22), respectively. CONCLUSIONS: The present results suggest that serum surface-enhanced laser desorption/ionization protein profiling can distinguish patients with gastric cancer, and in particular stage I/II patients, from normal subjects with a relatively high sensitivity and specificity. Surface-enhanced Laser Desorption/ionization-Time-of-flight-Mass Spectrometry is a potential new diagnostic tool for the screening of gastric cancer.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/análise , Neoplasias Gástricas/sangue , Neoplasias Gástricas/classificação , Adulto , Idoso , Algoritmos , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise Serial de Proteínas , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias Gástricas/patologia
6.
J Pept Sci ; 14(3): 290-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17929330

RESUMO

We have de novo designed four antimicrobial peptides AMP-A/B/C/D, the 51-residues peptides, which are based on the conserved sequence of cecropin. In the present study, the four peptides were chemically synthesized and their activities assayed. Their secondary structure, amphipathic property, electric field distribution and transmembrane domain were subsequently predicted by bioinformatics tools. Finally, the structure-activity relationship was analyzed from the results of activity experiments and prediction. The results of activity experiments indicated that AMP-B/C/D clearly possessed excellent broad-spectrum activity against bacteria, whereas AMP-A was almost inactive against most of the bacterial strains tested. AMP-B/C/D showed more potent activity against Gram-positive bacteria than against Gram-negative bacteria. By utilizing bioinformatics analysis tools, we found that the secondary structure of the four cation peptides was mainly alpha-helix, and the result of CD spectrum also displayed that all the peptides had considerable alpha-helix in the presence of either 50% TFE or SDS micelles. AMP-C showed much better activity than other peptides against most of the bacteria tested, owing to its remarkable cation property and the amphipathic character of its N-terminal. The study of structure-activity relationship of the designed peptides confirmed that amphipathic structure and high net positive charge were prerequisites for maintaining their activities.


Assuntos
Anti-Infecciosos/farmacologia , Cecropinas/química , Sequência Conservada , Desenho de Fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA