Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Colloid Interface Sci ; 652(Pt B): 1878-1888, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688934

RESUMO

Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.

3.
Chemosphere ; 268: 129340, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360939

RESUMO

Bromate (BrO3-) is a predominant undesired toxic disinfection by-product (DBP) during ozonation of bromide-containing waters. The reduction of BrO3- by zero valent iron (ZVI) and its effect on formation of organic halogenated DBPs during chlorination were investigated in this study. The presence of ZVI could reduce BrO3- to bromide (Br-), and Br- formed could be transformed to free bromine (HOBr/OBr-) during chlorination, further leading to organic brominated (Br-) DBPs formation. Formation of DBPs during chlorination, including trihalomethanes (THMs) and haloacetonitriles (HANs) was detected under different conditions. The results showed that when ZVI dosage increased from 0 to 1 g L-1, the formation of Br-DBPs (e.g., TBM and DBCM) was significantly improved, while the formation of Cl-DBPs (e.g., TCM, TCAN and DCAN) reduced. Higher ZVI dosage exhibited inhibitory effect on Br-DBPs formation due to the competition between ZVI and free chlorine (HOCl/OCl-). The bromine substitution factor (BSF) of THMs significantly decreased from 0.61 ± 0.06 to 0.22 ± 0.02, as the pH was raised from 5.0 to 9.0. Besides, the increase of initial BrO3- concentration significantly improved the formation of Br-DBPs and decreased the formation of Cl-DBPs, leading to an obvious rise on the BSF of THMs. As the initial concentration of HOCl increased, all THMs and HANs gradually increased. Moreover, the analysis based on the cytotoxicity index (CTI) of the determined DBPs showed that reduction of BrO3- by ZVI during chlorination had certain risks in real water sources, which should be paid attention to in the application.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Bromatos , Brometos , Desinfecção , Halogenação , Ferro , Trialometanos , Poluentes Químicos da Água/análise
4.
J Biol Chem ; 291(48): 24912-24921, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27729453

RESUMO

Chondrogenesis can regulate bone formation. Fibroblast growth factor receptor 3, highly expressed in chondrocytes, is a negative regulator of bone growth. To investigate whether chondrocyte FGFR3 regulates osteogenesis, thereby contributing to postnatal bone formation and bone remodeling, mice with conditional knock-out of Fgfr3 in chondrocytes (mutant (MUT)) were generated. MUT mice displayed overgrowth of bone with lengthened growth plates. Bone mass of MUT mice was significantly increased at both 1 month and 4 months of age. Histological analysis showed that osteoblast number and bone formation were remarkably enhanced after deletion of Fgfr3 in chondrocytes. Chondrocyte-osteoblast co-culture assay further revealed that Fgfr3 deficiency in chondrocytes promoted differentiation and mineralization of osteoblasts by up-regulating the expressions of Ihh, Bmp2, Bmp4, Bmp7, Wnt4, and Tgf-ß1, as well as down-regulating Nog expression. In addition, osteoclastogenesis was also impaired in MUT mice with decreased number of osteoclasts lining trabecular bone, which may be related to the reduced ratio of Rankl to Opg in Fgfr3-deficient chondrocytes. This study reveals that chondrocyte FGFR3 is involved in the regulation of bone formation and bone remodeling by a paracrine mechanism.


Assuntos
Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Osteogênese/fisiologia , Osteoprotegerina/biossíntese , Comunicação Parácrina/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/biossíntese , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Remodelação Óssea/fisiologia , Células Cultivadas , Condrócitos/citologia , Técnicas de Cocultura , Lâmina de Crescimento/citologia , Camundongos , Camundongos Knockout , Tamanho do Órgão/fisiologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoprotegerina/genética , Ligante RANK/biossíntese , Ligante RANK/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fator de Crescimento Transformador beta1/genética , Proteína Wnt4/biossíntese , Proteína Wnt4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA