Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Int Med Res ; 52(4): 3000605241238134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630560

RESUMO

OBJECTIVE: We explored whether changes in clinical parameters and inflammatory markers can facilitate early identification of positive blood culture in adult patients with COVID-19 and clinically suspected bloodstream infection (BSI). METHODS: This single-center retrospective study enrolled 20 adult patients with COVID-19 admitted to the intensive care unit who underwent blood culture for clinically suspected BSI (February 2020-November 2021). We divided patients into positive (Pos) and negative blood culture groups. Clinical parameters and inflammatory markers were obtained from medical records between blood culture collection and the first positive or negative result and compared between groups on different days. RESULTS: Patients in the positive culture group had significantly older age and higher D-dimer, immunoglobulin 6 (IL-6), and Sequential Organ Failure Assessment score as well as lower albumin (ALB). The area under the receiver operating characteristic curve (AUC) was 0.865 for IL-6, D-dimer and ALB on the first day after blood culture collection; the AUC was 0.979 for IL-6, IL-10, D-dimer, and C-reactive protein on the second day after blood culture collection. CONCLUSION: Changes in clinical parameters and inflammatory markers after blood culture collection may facilitate early identification of positive culture in adult patients with COVID-19 and clinically suspected BSI.


Assuntos
COVID-19 , Sepse , Adulto , Humanos , Estudos Retrospectivos , Hemocultura , Interleucina-6
2.
Chem Commun (Camb) ; 59(100): 14851-14854, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38015465

RESUMO

A laser-induced immobilization strategy is applied to prepare an amorphous iron-phosphate/Fe3O4 (L-FePO) composite on a nickel foam (NF) support. By laser-irradiating an iron hydrogen phosphate (FeHP) precursor, a melting and oxidation process leads to the generation of L-FePO with hierarchical pores and an amorphous structure. L-FePO shows exceptional electrocatalytic performance for the OER in an alkaline electrolyte, demonstrating an overpotential of 256 mV at 100 mA cm-2, a Tafel slope of 71 mV dec-1, and good stability over 100 h. The active Fe3O4, partially dissolved phosphate, and newly formed FeOOH species provide abundant active sites, contributing to the excellent OER performance.

3.
Front Surg ; 9: 1018637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386537

RESUMO

Importance: The number of infections and deaths caused by the global epidemic of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) invasion is steadily increasing daily. In the early stages of outbreak, approximately 15%-20% of patients with coronavirus disease 2019 (COVID-19) inevitably developed severe and critically ill forms of the disease, especially elderly patients and those with several or serious comorbidities. These more severe forms of disease mainly manifest as dyspnea, reduced blood oxygen saturation, severe pneumonia, acute respiratory distress syndrome (ARDS), thus requiring prolonged advanced respiratory support, including high-flow nasal cannula (HFNC), non-invasive mechanical ventilation (NIMV), and invasive mechanical ventilation (IMV). Objective: This study aimed to propose a safer and more practical tracheotomy in invasive mechanical ventilated patients with COVID-19. Design: This is a single center quality improvement study. Participants: Tracheotomy is a necessary and important step in airway management for COVID-19 patients with prolonged endotracheal intubation, IMV, failed extubation, and ventilator dependence. Standardized third-level protection measures and bulky personal protective equipment (PPE) may hugely impede the implementation of tracheotomy, especially when determining the optimal pre-surgical positioning for COVID-19 patients with ambiguous surface position, obesity, short neck or limited neck extension, due to vision impairment, reduced tactile sensation and motility associated with PPE. Consequently, the aim of this study was to propose a safer and more practical tracheotomy, namely percutaneous dilated tracheotomy (PDT) with delayed endotracheal intubation withdrawal under the guidance of bedside ultrasonography without the conventional use of flexible fiberoptic bronchoscopy (FFB), which can accurately determine the optimal pre-surgical positioning, as well as avoid intraoperative damage of the posterior tracheal wall and prevent the occurrence of tracheoesophageal fistula (TEF).

4.
J Environ Manage ; 324: 116243, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155084

RESUMO

Anaerobic digestion is widely considered to be a promising technology for waste activated sludge (WAS) treatment, by which sludge stabilization and resource recovery are simultaneously achieved. The poor reaction efficiency however hinders the large-scale applications of WAS anaerobic digestion technology. This study reported an efficient sludge pretreatment method by combining freezing with calcium hypochlorite (Ca(ClO)2) for enhancing the anaerobic digestion efficiency. Experimental data showed that the optimal combination was freezing at -20 °C coupled with 0.075 g/g VSS (volatile suspended solids) Ca(ClO)2, by which the maximum biomethane production of 274.4 ± 8.2 mL/g VSS was realized, 1.62 times higher than that of the control. Model-based analysis demonstrated that higher potential and rate for methane production were attained by the combined pretreatment. Mechanism analysis revealed that the extracellular polymeric substances (EPS) and microbial cells were both effectively destructed when treated by combined freezing and Ca(ClO)2, and more dissolved organics were generated in consequence. Microbial analysis demonstrated that the co-treated reactor enriched more functional microbes (such as Methanosaeta, Methanosarcina and Candidatus_Methanofastidiosum) responsible for biomethane generation than that of the control. Furthermore, the number of fecal coliform was largely reduced in co-treated reactor. As the correlation between sludge anaerobic digestion performance and numerous pretreatment parameters was systematically revealed, this study can provide important references for engineers when applying the combined freezing and Ca(ClO)2 technology in practical engineering.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Congelamento , Metano , Reatores Biológicos
5.
Nat Commun ; 11(1): 5061, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033262

RESUMO

The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3's catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription.


Assuntos
Reprogramação Celular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Catálise , Proliferação de Células , Senescência Celular , Desmetilação , Elementos Facilitadores Genéticos/genética , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Lisina/metabolismo , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ativação Transcricional/genética
6.
ACS Appl Mater Interfaces ; 9(20): 16977-16985, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28475302

RESUMO

The development of highly efficient and low-cost oxygen evolution electrocatalysts is extremely imperative for the new energy technology. Transition metal carbides have been investigated as remarkable hydrogen evolution reaction (HER) electrocatalysts but undesired oxygen evolution reaction (OER) electrocatalysts and need further study. Here, a cobalt-molybdenum-based bimetallic carbide coated by N-doped porous carbon and anchored on N-doped reduced graphene oxide film (Co6Mo6C2/NCRGO) is synthesized by directly carbonizing the Co-doped polyoxometalate/conductive polymer/graphene oxide (Co-PCG) precursors. The precise control of the Co/Mo molar ratio in the Co-PCG precursor is of critical importance to synthesize pure phase bimetallic carbide of Co6Mo6C2. As the highly active and robust OER electrocatalyst, the Co6Mo6C2/NCRGO composite exhibits excellent activity in alkaline solution, affording a low overpotential of 260 mV versus RHE at 10 mA cm-2, a small Tafel slope of 50 mV dec-1, as well as long-term stability. The superior OER performances are strongly associated with the active Co6Mo6C2 particles, polypyrrole (PPy)-derived N-doped porous carbon, and the conductive RGO films. Remarkably, it is the first evidence that the bimetallic carbides were used as the OER catalysts with such high OER activity.

7.
ChemSusChem ; 10(11): 2402-2407, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28337857

RESUMO

Efficient hydrogen evolution reaction (HER) from water by electrocatalysis using cost-effective materials is critical to realize the clean hydrogen production. Herein, with controlling the structure and composition of polyoxotungstate/conductive polypyrrole/graphene (PCG) precursor precisely and followed by a temperature-programmed reaction, we developed a highly active and stable catalyst: NC@Wx C/NRGO (NC: nitrogen-doped porous carbon, NRGO: nitrogen-doped reduced graphene oxide). The composite presents splendid performance towards HER in acidic media, with a small onset overpotential of 24 mV versus RHE (reversible hydrogen electrode), a low Tafel slope of 58.4 mV dec-1 , a low overpotential of 100 mV at 10 mA cm-2 , and remarkable long-term cycle stability. This is one of the highest HER catalysts among the tungsten carbide-based materials ever reported.


Assuntos
Grafite/química , Hidrogênio/química , Polímeros/química , Pirróis/química , Compostos de Silício/química , Compostos de Tungstênio/química , Catálise , Eletroquímica/métodos , Água/química
8.
Chem Commun (Camb) ; 51(62): 12377-80, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26140676

RESUMO

Novel polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids (TNHs) are synthesized via a one-pot redox relay strategy. The TNHs exhibit high areal specific capacitance (2.61 mF cm(-2)), and the fabricated solid device also exhibits good rate capability, excellent flexibility and mechanical stability.


Assuntos
Grafite/química , Nanoestruturas/química , Óxidos/química , Polímeros/química , Pirróis/química , Compostos de Tungstênio/química , Capacitância Elétrica , Eletrodos , Nanoestruturas/ultraestrutura , Oxirredução
9.
Nat Cell Biol ; 17(6): 715-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985393

RESUMO

We describe robust induction of autophagy during the reprogramming of mouse fibroblasts to induced pluripotent stem cells by four reprogramming factors (Sox2, Oct4, Klf4 and c-Myc), henceforth 4F. This process occurs independently of p53 activation, and is mediated by the synergistic downregulation of mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy-related genes. The 4F coordinately repress mTORC1, but bifurcate in their regulation of autophagy-related genes, with Klf4 and c-Myc inducing them but Sox2 and Oct4 inhibiting them. On one hand, inhibition of mTORC1 facilitates reprogramming by promoting cell reshaping (mitochondrial remodelling and cell size reduction). On the other hand, mTORC1 paradoxically impairs reprogramming by triggering autophagy. Autophagy does not participate in cell reshaping in reprogramming but instead degrades p62, whose accumulation in autophagy-deficient cells facilitates reprogramming. Our results thus reveal a complex signalling network involving mTORC1 inhibition and autophagy induction in the early phase of reprogramming, whose delicate balance ultimately determines reprogramming efficiency.


Assuntos
Autofagia/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/genética , Regulação para Baixo , Fibroblastos/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/biossíntese , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/biossíntese , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Chemistry ; 21(27): 9784-9, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015079

RESUMO

A series of isoreticular metal-organic frameworks (MOFs; NENU-511-NENU-514), which all have high surface areas and strong adsorption capacities, have been successfully constructed by using mixed ligands. NENU-513 has the highest benzene capacity of 1687 mg g(-1) at 298 K, which ranks as the top MOF material among those reported up to now. This NENU series has been used for adsorptive desulfurization because of its permanent porosity. The results indicate that this series has a higher adsorptive efficiency in the removal of organosulfur compounds than other MOF materials, especially NENU-511, which has the highest adsorptive efficiency in the ambient atmosphere. This study proves that the design and synthesis of targeted MOFs with higher surface areas and with functional groups present is an efficient method to enhance benzene-storage capacity and the adsorption of organosulfur compounds.

11.
J Gen Virol ; 86(Pt 5): 1403-1413, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831952

RESUMO

A series of 46 charged-to-alanine mutations in the yellow fever virus NS2B-NS3 protease, previously characterized in cell-free and transient cellular expression systems, was tested for their effects on virus recovery. Four distinct plaque phenotypes were observed in cell culture: parental plaque-size (13 mutants), reduced plaque-size (17 mutants), small plaque-size (8 mutants) and no plaque-formation (8 mutants). No mutants displayed any temperature sensitivity based on recovery of virus after RNA transfection at 32 versus 37 degrees C. Most small plaque-mutants were defective in growth efficiency compared with parental virus. However not all small plaque-mutants had defective 2B/3 cleavage, with some showing selective defects at other non-structural protein cleavage sites. Revertant viruses were recovered for six mutations that caused reduced plaque sizes. Same-site and second-site mutations occurred in NS2B, and one second-site mutation occurred in the NS3 protease domain. Some reversion mutations ameliorated defects in cleavage activity and plaque size caused by the original mutation. These data indicate that certain mutations that reduce NS2B-NS3 protease cleavage activity cause growth restriction of yellow fever virus in cell culture. However, for at least two mutations, processing defects other than impaired cleavage activity at the 2B/3 site may account for the mutant phenotype. The existence of reversion mutations primarily in NS2B rather than NS3, suggests that the protease domain is less tolerant of structural perturbation compared with the NS2B protein.


Assuntos
Substituição de Aminoácidos , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírus da Febre Amarela/enzimologia , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , RNA Helicases/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Ensaio de Placa Viral , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA