Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Ren Fail ; 46(2): 2374448, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38973428

RESUMO

BACKGROUND: Patients with idiopathic membranous nephropathy (IMN) are more likely to be complicated by venous thromboembolism (VTE). The aim of the study was to investigate the potential association between anti-phospholipase A2 receptor (PLA2R) antibodies and hypercoagulability in patients with IMN. METHODS: A total of 168 patients with biopsy-proven IMN and 36 patients with biopsy-proven minimal change disease (MCD) were enrolled in this study. The clinical data, serum anti-PLA2R antibodies and coagulation-related indices of the patients were retrospectively analyzed. RESULTS: Patients with IMN were categorized into glomerular PLA2R staining-positive (GAg+) IMN group and glomerular PLA2R staining-negative (GAg-) IMN group in the study. Patients with IMN who were GAg + had lower PT, APTT and R time than patients with IMN who were GAg-, while the CI value was higher in patients with IMN who were GAg+. Patients with IMN who were GAg + were divided into the SAb+/GAg + group and the SAb-/GAg + group. Patients with IMN who were SAb+/GAg + had higher Fib and MA values than patients with IMN who were SAb-/GAg+. Correlation analysis showed that serum anti-PLA2R antibodies were positively correlated with fibrinogen, D-dimer, K time, CI value, α-angle, and MA value. Multiple linear regression analysis indicated that anti-PLA2R antibodies were independently correlated with fibrinogen and MA value. CONCLUSION: Our study provides a new perspective on the underlying mechanisms of hypercoagulability in patients with IMN. Anti-PLA2R antibodies are associated with hypercoagulability in patients with IMN and may affect coagulation in patients with IMN by affecting platelet aggregation function and fibrinogen counts.


Assuntos
Autoanticorpos , Glomerulonefrite Membranosa , Receptores da Fosfolipase A2 , Trombofilia , Humanos , Receptores da Fosfolipase A2/imunologia , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/complicações , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Trombofilia/etiologia , Trombofilia/imunologia , Trombofilia/sangue , Autoanticorpos/sangue
2.
Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775809

RESUMO

Aberrant activation of the Hedgehog (Hh) signaling pathway plays important roles in oncogenesis and therapeutic resistance in several types of cancer. The clinical application of FDA-approved Hh-targeted Smoothened inhibitors (SMOi) is hindered by the emergence of primary or acquired drug resistance. Epigenetic and transcriptional targeted therapies represent a promising direction for developing improved anti-Hh therapies. In this study, we integrated epigenetic/transcriptional-targeted small-molecule library screening with CRISPR/Cas9 knockout library screening and identified CDK9 and CDK12, two transcription elongation regulators, as therapeutic targets for antagonizing aberrant Hh activation and overcoming SMOi resistance. Inhibition of CDK9 or CDK12 potently suppressed Hh signaling and tumor growth in various SMOi responsive or resistant Hh-driven tumor models. Systemic epigenomic profiling elucidated the Hh-driven super-enhancer (SE) landscape and identified IRS1, encoding a critical component and cytoplasmic adaptor protein of the IGF pathway, as an oncogenic Hh-driven SE target gene and effective therapeutic target in Hh-driven tumor models. Collectively, this study identifies SE-driven transcriptional dependencies that represent promising therapeutic vulnerabilities for suppressing the Hh pathway and overcoming SMOi resistance. As CDK9 and IRS inhibitors have already entered human clinical trials for cancer treatment, these findings provide comprehensive preclinical support for developing trials for Hh-driven cancers.

3.
ACS Omega ; 9(10): 11628-11636, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497012

RESUMO

Multistage fracturing is widely used in the development of tight oil reservoirs, and the fine description of postfracturing fracture networks is a challenge in tight oil reservoir development. Based on the formation mechanism of dual-wing fractures and the principles of tracer flowback, a mathematical model for tracer concentration in dual-wing fractures is established by considering the convective diffusion of the tracer within the fractures. An interpretation method for tracer flowback curves, utilizing a combination of Gaussian fitting and theoretical equation inversion, is developed to provide a detailed description of fracture parameters such as fracture half-length, fracture width, and fracture conductivity in the postfracturing fracture network. This method can be rapidly applied in field practices. Application examples demonstrate that the relative errors between the calculated cumulative oil and water production using this method and the actual data are less than 5%, validating the accuracy and applicability of the established mathematical model for tracer flowback and the interpretation method for tracer concentration curves in addressing practical problems.

4.
J Cell Mol Med ; 28(8): e18261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526029

RESUMO

We aimed to explore the biological function of CPNE7 and determine the impact of CPNE7 on chemotherapy resistance in colorectal cancer (CRC) patients. According to the Gene Expression Profiling Interactive Analysis database and previously published data, CPNE7 was identified as a potential oncogene in CRC. RT-qPCR and Western blotting were performed to verify the expression of CPNE7. Chi-square test was used to evaluate the associations between CPNE7 and clinical features. Cell proliferation, colony formation, cell migration and invasion, cell cycle and apoptosis were assessed to determine the effects of CPNE7. Transcriptome sequencing was used to identify potential downstream regulatory genes, and gene set enrichment analysis was performed to investigate downstream pathways. The effect of CPNE7 on 5-fluorouracil chemosensitivity was verified by half maximal inhibitory concentration (IC50). Subcutaneous tumorigenesis assay was used to examine the role of CPNE7 in sensitivity of CRC to chemotherapy in vivo. Transmission electron microscopy was used to detect autophagosomes. CPNE7 was highly expressed in CRC tissues, and its expression was correlated with T stage and tumour site. Knockdown of CPNE7 inhibited the proliferation and colony formation of CRC cells and promoted apoptosis. Knockdown of CPNE7 suppressed the expression of ATG9B and enhanced the sensitivity of CRC cells to 5-fluorouracil in vitro and in vivo. Knockdown of CPNE7 reversed the induction of the autophagy pathway by rapamycin and reduced the number of autophagosomes. Depletion of CPNE7 attenuated the malignant proliferation of CRC cells and enhanced the chemosensitivity of CRC cells to 5-fluorouracil.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética
5.
Animal Model Exp Med ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477441

RESUMO

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant brain tumors that mainly affect children. Various approaches have been used to model MB to facilitate investigating tumorigenesis. This study aims to compare the recapitulation of MB between subcutaneous patient-derived xenograft (sPDX), intracranial patient-derived xenograft (iPDX), and genetically engineered mouse models (GEMM) at the single-cell level. METHODS: We obtained primary human sonic hedgehog (SHH) and group 3 (G3) MB samples from six patients. For each patient specimen, we developed two sPDX and iPDX models, respectively. Three Patch+/- GEMM models were also included for sequencing. Single-cell RNA sequencing was performed to compare gene expression profiles, cellular composition, and functional pathway enrichment. Bulk RNA-seq deconvolution was performed to compare cellular composition across models and human samples. RESULTS: Our results showed that the sPDX tumor model demonstrated the highest correlation to the overall transcriptomic profiles of primary human tumors at the single-cell level within the SHH and G3 subgroups, followed by the GEMM model and iPDX. The GEMM tumor model was able to recapitulate all subpopulations of tumor microenvironment (TME) cells that can be clustered in human SHH tumors, including a higher proportion of tumor-associated astrocytes and immune cells, and an additional cluster of vascular endothelia when compared to human SHH tumors. CONCLUSIONS: This study was the first to compare experimental models for MB at the single-cell level, providing value insights into model selection for different research purposes. sPDX and iPDX are suitable for drug testing and personalized therapy screenings, whereas GEMM models are valuable for investigating the interaction between tumor and TME cells.

6.
Cancer Res ; 84(4): 598-615, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095539

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is the most aggressive pediatric brain tumor, and the oncohistone H3.3K27M mutation is associated with significantly worse clinical outcomes. Despite extensive research efforts, effective approaches for treating DIPG are lacking. Through drug screening, we identified the combination of gemcitabine and fimepinostat as a potent therapeutic intervention for H3.3K27M DIPG. H3.3K27M facilitated gemcitabine-induced apoptosis in DIPG, and gemcitabine stabilized and activated p53, including increasing chromatin accessibility for p53 at apoptosis-related loci. Gemcitabine simultaneously induced a prosurvival program in DIPG through activation of RELB-mediated NF-κB signaling. Specifically, gemcitabine induced the transcription of long terminal repeat elements, activated cGAS-STING signaling, and stimulated noncanonical NF-κB signaling. A drug screen in gemcitabine-treated DIPG cells revealed that fimepinostat, a dual inhibitor of HDAC and PI3K, effectively suppressed the gemcitabine-induced NF-κB signaling in addition to blocking PI3K/AKT activation. Combination therapy comprising gemcitabine and fimepinostat elicited synergistic antitumor effects in vitro and in orthotopic H3.3K27M DIPG xenograft models. Collectively, p53 activation using gemcitabine and suppression of RELB-mediated NF-κB activation and PI3K/AKT signaling using fimepinostat is a potential therapeutic strategy for treating H3.3K27M DIPG. SIGNIFICANCE: Gemcitabine activates p53 and induces apoptosis to elicit antitumor effects in H3.3K27M DIPG, which can be enhanced by blocking NF-κB and PI3K/AKT signaling with fimepinostat, providing a synergistic combination therapy for DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Morfolinas , Pirimidinas , Compostos de Enxofre , Criança , Humanos , Glioma Pontino Intrínseco Difuso/genética , Gencitabina , NF-kappa B , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Proteína Supressora de Tumor p53
7.
Biotechnol Appl Biochem ; 71(1): 232-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964466

RESUMO

Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. Although the overexpression (OE) of ubiquitin-specific peptidase 21 (USP21) has been observed in multiple cancers, its expression profile and biological function in ovarian cancer remain unknown. The expression levels of USP21 in ovarian cancer cells and tissues as well as adjacent normal tissues were assessed by qRT-PCR or Western blot assay. The biological function of USP21 in ovarian cancer cells was assessed by cell growth assay in vitro and a tumor growth model in vivo. Our study revealed that USP21 was markedly elevated in ovarian carcinoma tissues compared with adjacent normal tissues. Downregulation of USP21 attenuated the expression levels of MEK2 and p-ERK1/2. Depletion of USP21 resulted in suppressed cell growth of ovarian cancers in vitro and inhibited tumor growth in vivo. Conversely, OE of USP21 promoted the cell proliferation of ovarian cancers and conferred resistance to BAY 11-7082. These findings provide evidences supporting the notion of USP21 as a promising therapeutic target for the treatment of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Morte Celular , Regulação Neoplásica da Expressão Gênica , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Rheumatology (Oxford) ; 62(11): 3724-3731, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912714

RESUMO

OBJECTIVE: DM with positive anti-melanoma differentiation-related gene 5 (MDA5) antibody is an autoimmune disease with multiple complications. Interstitial lung diseases (ILDs) are significantly associated with DM and are particularly related to MDA5+ DM. This article aims to explore potential molecular mechanisms and develop new diagnostic biomarkers for MDA5+ DM-ILD. METHODS: The series matrix files of DM and non-specific interstitial pneumonia (NSIP) were downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) was used to screen the common enriched pathways related to DM and NSIP. Next, the co-expressed differential expressed genes (co-DEGs) between MDA5+, MDA5- and NSIP groups were identified by Venn plots, and then selected for different enrichment analyses and protein-protein interaction (PPI) network construction. The mRNA expression levels of IFN-beta and EIF2AK2 were measured by RT-qPCR. The protein expression levels of IFN-beta were measured by ELISA. RESULTS: Using GSEA, the enriched pathway 'herpes simplex virus 1 infection' was both up-regulated in DM and NSIP. Enrichment analysis in MDA5+ DM, MDA5- DM and NSIP reported that the IFN-beta signalling pathway was an important influencing factor in the MDA5+ DM-ILD. We also identified that eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) was an important gene signature in the MDA5+ DM-ILD by PPI analysis. The expression levels of IFN-beta and EIF2AK2 were significantly increased in MDA5+ DM-ILD patients. CONCLUSIONS: IFN-beta and EIF2AK2 contributed to the pathogenesis of MDA5+ DM-ILD, which could be used as potential therapeutic targets.


Assuntos
Doenças Autoimunes , Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Dermatomiosite/complicações , Dermatomiosite/genética , Dermatomiosite/diagnóstico , Autoanticorpos , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/complicações , Biomarcadores , Doenças Autoimunes/complicações , Helicase IFIH1 Induzida por Interferon/genética , Estudos Retrospectivos , Prognóstico , eIF-2 Quinase
9.
Ecotoxicol Environ Saf ; 253: 114690, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857925

RESUMO

A variety of important major and trace elements may competitively inhibit cadmium (Cd) absorption in human cells and reduce Cd toxicity. However, the impact of essential elements on the cytotoxicity of metals can be difficult to quantify and anticipate. Cd acute toxicity to Caco-2 cell viability was studied in culture solutions and modeled by a biotic ligand model (BLM). The individual effects of the cations potassium (K+), calcium (Ca2+), magnesium (Mg2+), ferrous ion(Fe2+), zinc (Zn2+) and manganese (Mn2+) on Cd toxicity were also investigated. The results indicated that the toxicity of Cd in culture solutions to cell viability declined with increasing concentrations of Zn2+ and Mn2+ in the solutions, while K+, Ca2 +, Mg2 + and Fe2+ had no significant effect. Using the BLM, the stability constants for the binding of Cd2 +, Zn2+, and Mn2+ to biotic ligands were determined to be logKCdBL = 5.76, logKZnBL = 4.39 and logKMnBL = 5.31, respectively. Moreover, it was calculated that 51% occupancy of the biotic ligand sites for Cd by Cd was required to cause a 50% reduction in Caco-2 cell viability. A BLM was successfully established using the estimated constants to predict the Cd cytotoxicity to Caco-2 cell viability as a function of solution characteristics, so that the effective concentrations that reduced cell viability by 50% (EC50) could be predicted by the BLM within 1.6 fold changes of the observed EC50. The application's viability and precision for foretelling Cd toxicity in Caco-2 cells are discussed.


Assuntos
Cádmio , Magnésio , Humanos , Cádmio/metabolismo , Ligantes , Células CACO-2 , Magnésio/química , Cátions , Modelos Biológicos
10.
J Adv Res ; 54: 181-193, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36681114

RESUMO

BACKGROUND: Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW: This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW: When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.


Assuntos
Imunidade Inata , Inflamassomos , Imunidade Adaptativa , Linfócitos , Transdução de Sinais
11.
Hepatology ; 77(6): 1911-1928, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36059151

RESUMO

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the predominant type of childhood liver cancer. Treatment options for the clinically advanced HB remain limited. We aimed to dissect the cellular and molecular basis underlying HB oncogenesis and heterogeneity at the single-cell level, which could facilitate a better understanding of HB at both the biological and clinical levels. APPROACH AND RESULTS: Single-cell transcriptome profiling of tumor and paired distal liver tissue samples from five patients with HB was performed. Deconvolution analysis was used for integrating the single-cell transcriptomic profiles with the bulk transcriptomes of our HB cohort of post-neoadjuvant chemotherapy tumor samples. A single-cell transcriptomic landscape of early human liver parenchymal development was established for exploring the cellular root and hierarchy of HB oncogenesis. As a result, seven distinct tumor cell subpopulations were annotated, and an effective HB subtyping method was established based on their compositions. A HB tumor cell hierarchy was further revealed to not only fit with the classical cancer stem cell (CSC) model but also mirror the early human liver parenchymal development. Moreover, FACT inhibition, which could disrupt the oncogenic positive feedback loop between MYC and SSRP1 in HB, was identified as a promising epigenetic-targeted therapeutic strategy against the CSC-like HB1-Pro-like1 subpopulation and its related high-risk "Pro-like1" subtype of HB. CONCLUSIONS: Our findings illustrate the cellular architecture and developmental trajectories of HB via integrative bulk and single-cell transcriptome analyses, thus establishing a resourceful framework for the development of targeted diagnostics and therapeutics in the future.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/tratamento farmacológico , Transcriptoma , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade/uso terapêutico , Fatores de Elongação da Transcrição
12.
Oncogene ; 42(1): 11-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357572

RESUMO

EWS/ETS fusion transcription factors, most commonly EWSR1::FLI1, drives initiation and progression of Ewing sarcoma (EwS). Even though direct targeting EWSR1::FLI1 is a formidable challenge, epigenetic/transcriptional modulators have been proved to be promising therapeutic targets for indirectly disrupting its expression and/or function. Here, we identified structure-specific recognition protein 1 (SSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex, to be an essential tumor-dependent gene directly induced by EWSR1::FLI1 in EwS. The FACT-targeted drug CBL0137 exhibits potent therapeutic efficacy against multiple EwS preclinical models both in vitro and in vivo. Mechanistically, SSRP1 and EWSR1::FLI1 form oncogenic positive feedback loop via mutual transcriptional regulation and activation, and cooperatively promote cell cycle/DNA replication process and IGF1R-PI3K-AKT-mTOR pathway to drive EwS oncogenesis. The FACT inhibitor drug CBL0137 effectively targets the EWSR1::FLI1-FACT circuit, resulting in transcriptional disruption of EWSR1::FLI1, SSRP1 and their downstream effector oncogenic signatures. Our study illustrates a crucial role of the FACT complex in facilitating the expression and function of EWSR1::FLI1 and demonstrates FACT inhibition as a novel and effective epigenetic/transcriptional-targeted therapeutic strategy against EwS, providing preclinical support for adding EwS to CBL0137's future clinical trials.


Assuntos
Sarcoma de Ewing , Humanos , Linhagem Celular Tumoral , Cromatina , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Fatores de Elongação da Transcrição/metabolismo
13.
Front Oncol ; 13: 1231508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328435

RESUMO

Background: We attempted to develop a progression prediction model for local advanced rectal cancer(LARC) patients who received preoperative neoadjuvant chemoradiotherapy(NCRT) and operative treatment to identify high-risk patients in advance. Methods: Data from 272 LARC patients who received NCRT and total mesorectal excision(TME) from 2011 to 2018 at the Fourth Hospital of Hebei Medical University were collected. Data from 161 patients with rectal cancer (each sample with one target variable (progression) and 145 characteristic variables) were included. One Hot Encoding was applied to numerically represent some characteristics. The K-Nearest Neighbor (KNN) filling method was used to determine the missing values, and SmoteTomek comprehensive sampling was used to solve the data imbalance. Eventually, data from 135 patients with 45 characteristic clinical variables were obtained. Random forest, decision tree, support vector machine (SVM), and XGBoost were used to predict whether patients with rectal cancer will exhibit progression. LASSO regression was used to further filter the variables and narrow down the list of variables using a Venn diagram. Eventually, the prediction model was constructed by multivariate logistic regression, and the performance of the model was confirmed in the validation set. Results: Eventually, data from 135 patients including 45 clinical characteristic variables were included in the study. Data were randomly divided in an 8:2 ratio into a data set and a validation set, respectively. Area Under Curve (AUC) values of 0.72 for the decision tree, 0.97 for the random forest, 0.89 for SVM, and 0.94 for XGBoost were obtained from the data set. Similar results were obtained from the validation set. Twenty-three variables were obtained from LASSO regression, and eight variables were obtained by considering the intersection of the variables obtained using the previous four machine learning methods. Furthermore, a multivariate logistic regression model was constructed using the data set; the ROC indicated its good performance. The ROC curve also verified the good predictive performance in the validation set. Conclusions: We constructed a logistic regression model with good predictive performance, which allowed us to accurately predict whether patients who received NCRT and TME will exhibit disease progression.

14.
J Exp Clin Cancer Res ; 41(1): 352, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539767

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS: We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS: High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION: This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.


Assuntos
Neuroblastoma , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Retroalimentação , Fatores de Transcrição/metabolismo , Neuroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Smad8/genética , Proteína Smad8/metabolismo
15.
Nat Commun ; 13(1): 7207, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418292

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor that most commonly affects children, adolescents, and young adults. Here, we comprehensively analyze genomic, epigenomic and transcriptomic data from 121 OS patients. Somatic mutations are diverse within the cohort, and only TP53 is significantly mutated. Through unsupervised integrative clustering of the multi-omics data, we classify OS into four subtypes with distinct molecular features and clinical prognosis: (1) Immune activated (S-IA), (2) Immune suppressed (S-IS), (3) Homologous recombination deficiency dominant (S-HRD), and (4) MYC driven (S-MD). MYC amplification with HR proficiency tumors is identified with a high oxidative phosphorylation signature resulting in resistance to neoadjuvant chemotherapy. Potential therapeutic targets are identified for each subtype, including platinum-based chemotherapy, immune checkpoint inhibitors, anti-VEGFR, anti-MYC and PARPi-based synthetic lethal strategies. Our comprehensive integrated characterization provides a valuable resource that deepens our understanding of the disease, and may guide future clinical strategies for the precision treatment of OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto Jovem , Adolescente , Criança , Humanos , Osteossarcoma/genética , Osteossarcoma/terapia , Genômica/métodos , Transcriptoma , Platina , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
16.
J Exp Clin Cancer Res ; 41(1): 311, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273157

RESUMO

BACKGROUND: Medulloblastoma is the most common malignant pediatric brain tumor and group 3 subtype medulloblastoma (G3-MB) exhibits the worst prognosis. Super enhancers (SEs) are large clusters of enhancers that play important roles in cancer through transcriptional control of cell identity genes, oncogenes and tumor-dependent genes. Dissecting SE-driven transcriptional dependencies of cancer leads to identification of novel oncogenic mechanisms, therapeutic strategies and targets. METHODS: Integrative SE analyses of primary tissues and patient-derived tumor cell lines of G3-MB were performed to extract the conserved SE-associated gene signatures and their oncogenic potentials were evaluated by gene expression, tumor-dependency and patient prognosis analyses. SE-associated subtype-specific upregulated tumor-dependent genes, which were revealed as members of SE-driven core transcriptional regulatory network of G3-MB, were then subjected to functional validation and mechanistic investigation. SE-associated therapeutic potential was further explored by genetic or pharmaceutical targeting of SE complex components or SE-associated subtype-specific upregulated tumor-dependent genes individually or in combination, and the underlying therapeutic mechanisms were also examined. RESULTS: The identified conserved SE-associated transcripts of G3-MB tissues and cell lines were enriched of subtype-specifically upregulated tumor-dependent genes and MB patients harboring enrichment of those transcripts exhibited worse prognosis. Fourteen such conserved SE-associated G3-MB-specific upregulated tumor-dependent genes were identified to be members of SE-driven core transcriptional regulatory network of G3-MB, including three well-recognized TFs (MYC, OTX2 and CRX) and eleven newly identified downstream effector genes (ARL4D, AUTS2, BMF, IGF2BP3, KIF21B, KLHL29, LRP8, MARS1, PSMB5, SDK2 and SSBP3). An OTX2-SE-ARL4D regulatory axis was further revealed to represent a subtype-specific tumor dependency and therapeutic target of G3-MB via contributing to maintaining cell cycle progression and inhibiting neural differentiation of tumor cells. Moreover, BET inhibition with CDK7 inhibition or proteasome inhibition, two combinatory strategies of targeting SE complex components (BRD4, CDK7) or SE-associated effector gene (PSMB5), were shown to exhibit synergistic therapeutic effects against G3-MB via stronger suppression of SE-associated transcription or higher induction of ER stress, respectively. CONCLUSIONS: Our study verifies the oncogenic role and therapeutic potential of SE-driven transcriptional dependencies of G3-MB, resulting in better understanding of its tumor biology and identification of novel SE-associated therapeutic strategies and targets.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/genética , Proteínas Nucleares/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição/metabolismo , Neoplasias Encefálicas/genética , Carcinogênese/genética , Neoplasias Cerebelares/genética , Preparações Farmacêuticas , Proteínas de Ciclo Celular/genética
17.
Nat Cancer ; 3(9): 1105-1122, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35915262

RESUMO

The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.3K27M and ACVR1 WT DIPG in a SMAD-dependent manner. Specifically, clinical data revealed that many DIPG tumors have exploited the capacity of CHRDL1 to hijack BMP ligands. We discovered that activation of BMP signaling promotes the exit of DIPG tumor cells from 'prolonged stem-cell-like' state to differentiation by epigenetically regulating CXXC5, which acts as a tumor suppressor and positive regulator of BMP signaling. Beyond showing how BMP signaling impacts DIPG, our study also identified the potent antitumor efficacy of Dacinostat for DIPG. Thus, our study delineates context-dependent features of the BMP signaling pathway in a DIPG subtype.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Astrocitoma/genética , Proteínas Morfogenéticas Ósseas/genética , Neoplasias do Tronco Encefálico/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Glioma Pontino Intrínseco Difuso/genética , Epigênese Genética , Humanos , Ligantes , Transdução de Sinais/genética , Fatores de Transcrição/genética
18.
Lasers Surg Med ; 54(8): 1099-1106, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811501

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate the clinical efficacy and safety of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of patients with positive margin in comparison to regular follow-up, and a repeat cervical conization. MATERIALS AND METHODS: A retrospective analysis was conducted using 83 patients with pathologically confirmed high-grade cervical intraepithelial neoplasia (CIN) with a positive margin after conization. The management methods and patient prognosis were analyzed and compared. RESULTS: Thirty-five, 33, and 15 patients were treated for regular follow-up, ALA-PDT, and a repeat cervical conization, respectively. About 33.3% (5/15) patients had residual lesions of low-grade CIN and above after recognization. The clinical characteristics of patients in the three groups were similar. The residual lesion rates of patients selected for follow-up, ALA-PDT, and recognization were 34.3% (12/35), 9.1% (3/33), and 0% (0/15), respectively, at 6-month follow-up (p = 0.004). The HPV clearance rates were 31.3%, 66.7%, and 84.6%, respectively (p = 0.01). Further analysis showed that a positive margin in the inscribed margin of the cervical canal (p = 0.022) and persistent HR-HPV positive tests after initial conization (p = 0.003) significantly increased the risk of residual disease. At 2-year follow-up, the recurrence rates of lesions were 3.3% and 26.1% in the ALA-PDT and follow-up groups, respectively (p = 0.021). Notably, the recurrence rates were not significantly different between the ALA-PDT and recognization groups (3.3% vs. 6.7%) (p = 0.561). CONCLUSION: ALA-PDT is an effective treatment for patients with a positive margin after cervical conization for high-grade CIN. Compared with regular follow-up, ALA-PDT can reduce residual and recurrence rate. Moreover, there was no significant difference in the efficacy between AlA-PDT and recognization.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Ácido Aminolevulínico/uso terapêutico , Conização/métodos , Feminino , Humanos , Margens de Excisão , Recidiva Local de Neoplasia , Estudos Retrospectivos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/cirurgia , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/cirurgia
19.
Front Genet ; 13: 919389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783281

RESUMO

Background: Immunotherapy is a treatment that can significantly improve the prognosis of patients with colon cancer, but the response to immunotherapy is different in patients with colon cancer because of the heterogeneity of colon carcinoma and the complex nature of the tumor microenvironment (TME). In the precision therapy mode, finding predictive biomarkers that can accurately identify immunotherapy-sensitive types of colon cancer is essential. Hypoxia plays an important role in tumor proliferation, apoptosis, angiogenesis, invasion and metastasis, energy metabolism, and chemotherapy and immunotherapy resistance. Thus, understanding the mechanism of hypoxia-related genes (HRGs) in colon cancer progression and constructing hypoxia-related signatures will help enrich our treatment strategies and improve patient prognosis. Methods: We obtained the gene expression data and corresponding clinical information of 1,025 colon carcinoma patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct hypoxia subtypes (subtype A and subtype B) according to unsupervised clustering analysis and assessed the clinical parameters, prognosis, and TME cell-infiltrating characteristics of patients in the two subtypes. We identified 1,132 differentially expressed genes (DEGs) between the two hypoxia subtypes, and all patients were randomly divided into the training group (n = 513) and testing groups (n = 512). Following univariate Cox regression with DEGs, we construct the prognostic model (HRG-score) including six genes (S1PR3, ETV5, CD36, FOXC1, CXCL10, and MMP12) through the LASSO-multivariate cox method in the training group. We comprehensively evaluated the sensitivity and applicability of the HRG-score model from the training group and the testing group, respectively. We explored the correlation between HRG-score and clinical parameters, tumor microenvironment, cancer stem cells (CSCs), and MMR status. In order to evaluate the value of the risk model in clinical application, we further analyzed the sensitivity of chemotherapeutics and immunotherapy between the low-risk group and high-risk group and constructed a nomogram for improving the clinical application of the HRG-score. Result: Subtype A was significantly enriched in metabolism-related pathways, and subtype B was significantly enriched in immune activation and several tumor-associated pathways. The level of immune cell infiltration and immune checkpoint-related genes, stromal score, estimate score, and immune dysfunction and exclusion (TIDE) prediction score was significantly different in subtype A and subtype B. The level of immune checkpoint-related genes and TIDE score was significantly lower in subtype A than that in subtype B, indicating that subtype A might benefit from immune checkpoint inhibitors. Finally, an HRG-score signature for predicting prognosis was constructed through the training group, and the predictive capability was validated through the testing group. The survival analysis and correlation analysis of clinical parameters revealed that the prognosis of patients in the high-risk group was significantly worse than that in the low-risk group. There were also significant differences in immune status, mismatch repair status (MMR), and cancer stem cell index (CSC), between the two risk groups. The correlation analysis of risk scores with IC50 and IPS showed that patients in the low-risk group had a higher benefit from chemotherapy and immunotherapy than those in the high-risk group, and the external validation IMvigor210 demonstrated that patients with low risk were more sensitive to immunotherapy. Conclusion: We identified two novel molecular subgroups based on HRGs and constructed an HRG-score model consisting of six genes, which can help us to better understand the mechanisms of hypoxia-related genes in the progression of colon cancer and identify patients susceptible to chemotherapy or immunotherapy, so as to achieve precision therapy for colon cancer.

20.
Future Oncol ; 18(23): 2583-2592, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35758002

RESUMO

Aim: To explore the appropriate triage methods for women infected with high-risk human papillomavirus (hrHPV). Materials & methods: A total of 424 out of 872 hrHPV-infected women were divided into cervicitis (n = 123), cervical intraepithelial neoplasia grade 1 (CIN1; n = 89), CIN2 (n = 72), CIN3 (n = 87) and cervical cancer (n = 53) groups. Results: The sensitivity/specificity of ZNF582m, PAX1m and liquid-based cytology (LBC) for hrHPV-infected women with transformation zone 3 CIN3+ was 83.9/93.1, 77.4/90.6 and 80.6/58.5%, respectively. The ZNF582m/PAX1m test had a higher specificity than LBC (p < 0.001) and similar sensitivity to that observed for LBC (p > 0.05). ZNF582m/PAX1m improved the positive predictive value of CIN3+ (64.7/60.0%) in low-grade LBC (negative predictive value: 91.7/88.7%). Conclusion: ZNF582m was superior to PAX1m and LBC tests in detecting CIN3+ in hrHPV-infected women.


Human papillomavirus (HPV) testing is the main method for cervical cancer screening. Although most HPV infections are transient and can be cleared by the body, persistent infection with HPV can lead to cervical cancer. In this study, 424 HPV-infected women were divided into normal, cervical intraepithelial neoplasia grade 1 (CIN1), CIN2, CIN3 and cervical cancer groups according to the grade of cervical lesion (low to high). Women with CIN3 or cervical cancer need treatment. ZNF582m, PAX1m and liquid-based cytology detected 83.9, 77.4 and 80.6% of women with CIN3+ and 93.1, 90.6 and 58.5% of women without CIN3+. However, the ZNF582m test was superior to the PAX1m and liquid-based cytology tests.


Assuntos
Neoplasias Primárias Desconhecidas , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Fatores de Transcrição Kruppel-Like , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/genética , Triagem , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Esfregaço Vaginal/métodos , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA