Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 132: 155896, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053250

RESUMO

BACKGROUND: 3,4,5-tri-O-caffeoylquinic acid (3,4,5-TCQA), a natural polyphenolic acid, has been shown to be effective against influenza A virus (IAV) infection. Although it was found to inhibit the neuraminidase of IAV, it may also perturb other cellular functions, as polyphenolic acids have shown antioxidant, anti-inflammatory and other activities. PURPOSE: This study aimed to investigate the effect of 3,4,5-TCQA at a cell level, which is critical for protecting host cell from IAV infection. STUDY DESIGN AND METHODS: We explored the effect of 3,4,5-TCQA on H292 cells infected or un-infected with Pr8 IAV. The major genes and related pathway were identified through RNA sequencing. The pathway was confirmed by qRT-PCR and western blot analysis. The anti-inflammatory activity was evaluated using nitric oxide measurement assay. RESULTS: We showed that 3,4,5-TCQA downregulated the immune response in H292 cells, and reduced the cytokine production in Pr8-infected cells, through Toll-like receptor (TLR) signaling pathway. In addition, 3,4,5-TCQA showed anti-inflammatory activity in LPS-activated RAW264.7 cells. CONCLUSION: Collectively, our results indicated that 3,4,5-TCQA suppressed inflammation caused by IAV infection through TLR3/7 signaling pathway. This provides a new insight into the antiviral mechanism of 3,4,5-TCQA.


Assuntos
Anti-Inflamatórios , Vírus da Influenza A , Ácido Quínico , Transdução de Sinais , Receptor 3 Toll-Like , Transdução de Sinais/efeitos dos fármacos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Animais , Receptor 3 Toll-Like/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Receptor 7 Toll-Like/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Óxido Nítrico/metabolismo , Antivirais/farmacologia , Ácido Clorogênico/farmacologia , Ácido Clorogênico/análogos & derivados
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769028

RESUMO

Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.


Assuntos
Agaricales/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Células HeLa , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , RNA Ribossômico 28S/metabolismo , Ratos , Ricina/metabolismo
3.
PLoS One ; 15(9): e0239899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986763

RESUMO

Influenza A virus controls replication and transcription of its genome through the tight regulation of interaction between the ribonucleoprotein (RNP) complex subunits. The helical scaffold of RNP is maintained by nucleoprotein (NP). Previous studies have revealed that NP interacts with both PB2 N-terminal and C-terminal regions, with both regions sharing similar affinity to NP as revealed in co-immunoprecipitation assay. Our work here suggests that the interaction between NP and PB2 N-terminal region lies in the cap-binding domain (residue 320-483). By co-immunoprecipitation assay, the interaction was found to involve RNA. On the other hand, the cap-binding activity was not essential in the interaction. As shown by the NHS pull-down assay, a specific RNA sequence was not required. Among the cap-binding domain, residues K331 and R332 of PB2 play a role in RNP function so that polymerase activity was reduced when these residues were mutated, while K331 was found to be more crucial in the NP interaction. Collectively, our findings suggest a new binding mode between NP and PB2 which was mediated by RNA, and such interaction may provide a novel interacting site for influenza drug development.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Domínios Proteicos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Imunoprecipitação , Proteínas do Nucleocapsídeo , Plasmídeos/genética , Ligação Proteica/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Transfecção , Proteínas do Core Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral/genética
4.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814281

RESUMO

The influenza C virus (ICV) is a human-pathogenic agent, and the infections are frequently identified in children. Compared to influenza A and B viruses, the nucleoprotein of ICV (NPC) has an extended C-terminal region of which the functional significance is ill defined. We observed that the nuclear localization signals (NLSs) found on the nucleoproteins of influenza A and B virus subtypes are absent at corresponding positions on ICV. Instead, we found that a long bipartite nuclear localization signal resides at the extended C-terminal region, spanning from R513 to K549. Our experimental data determined that the KKMK motif within this region plays important roles in both nuclear import and polymerase activity. Similar to the influenza A viruses, NPC also binds to multiple human importin α isoforms. Taken together, our results enhance the understanding of the virus-host interaction of the influenza C virus.IMPORTANCE As a member of the Orthomyxoviridae family, the polymerase complex of the influenza C virus structurally resembles its influenza A and influenza B virus counterparts, but the nucleoprotein differs by possessing an extra C-terminal region. We have characterized this region in view of nuclear import and interaction with the importin α protein family. Our results demonstrate the functional significance of a previously uncharacterized region on Orthomyxoviridae nucleoprotein (NP). Based on this work, we propose that importin α binding to influenza C virus NP is regulated by a long bipartite nuclear localization signal. Since the sequence of influenza D virus NP shares high homology to that of the influenza C virus, this work will also shed light on how influenza D virus NP functions.


Assuntos
Núcleo Celular/metabolismo , Gammainfluenzavirus/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/virologia , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Domínios Proteicos , Ribonucleoproteínas/genética , Proteínas do Core Viral/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
5.
Toxins (Basel) ; 8(10)2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27754366

RESUMO

Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome.


Assuntos
Fosfoproteínas/química , Proteínas Ribossômicas/química , Ricina/química , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Peptídeos/química , Conformação Proteica , Ricina/genética , Toxina Shiga/química , Tricosantina/química
6.
Chem Res Toxicol ; 23(4): 802-7, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20235591

RESUMO

The inhibitory mechanism of niacin, which was found in our previous study to effectively reduce acrylamide (AA) formation in both chemical models and fried potato strips, was investigated in the present study. Maillard chemical models containing the amino acid asparagine and glucose with or without niacin were closely examined by liquid chromatography/tandem mass spectrometry. Comparison of the chemical profiles revealed two additional peaks in models where niacin was present together with the AA precursors, which thus suggests the formation of compounds from reactions between niacin and other chemical species in the model systems. The predicted molecular weights of these two analytes were consistent with adducts formed between niacin and asparagine or AA, respectively. The niacin-acrylamide adduct was also detected in fried potato strips pretreated with niacin. In addition, the niacin-acrylamide adduct was subsequently purified and characterized by NMR spectroscopy as 1-propanamide-3-carboxy pyridinium, a novel compound that has never been reported previously. Furthermore, incubation of niacin with AA in simulated physiological conditions showed that niacin was capable of significantly reducing the level of AA. Findings from this study suggest that niacin not only has the potential to remove AA from food products during heat treatment by directly trapping it but also is a potential agent to scavenge AA in human body.


Assuntos
Acrilamida/química , Acrilamidas/química , Carcinógenos/química , Niacina/análogos & derivados , Niacina/metabolismo , Acrilamida/toxicidade , Acrilamidas/análise , Asparagina/química , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , Glucose/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Niacina/análise , Niacina/química , Solanum tuberosum/química , Espectrometria de Massas por Ionização por Electrospray
7.
Chem Res Toxicol ; 22(10): 1721-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19743801

RESUMO

Acrolein (ACR) and 4-hydroxy-trans-2-nonenal (HNE) are two cytotoxic lipid-derived alpha,beta-unsaturated aldehydes which have been implicated as causative agents in the development of carbonyl stress-associated pathologies. In this study, 21 natural polyphenols were screened to identify effective scavenging agents of ACR and/or HNE in simulated physiological conditions. It was found that flavan-3-ols, theaflavins, cyanomaclurin, and dihydrochalcones effectively trapped ACR and HNE by working as sacrificial nucleophiles. The most effective one was phloretin, which quenched up to 99.6% ACR in 90 min and 90.1% HNE in 24 h. Subsequent LC-MS/MS analysis showed that these effective polyphenols formed adducts with ACR and HNE. A major adduct formed from phloretin and ACR was purified, and its structure was characterized by LC-MS and NMR spectroscopy as diACR-conjugated phloretin. The chemical nature of interactions between ACR and polyphenols was proposed as the Michael addition reaction of phloretin to the C horizontal lineC double bond of ACR, followed by the formation of hemiacetal between the hydroxyl group in the A ring of phloretin and the C horizontal lineO carbonyl group in ACR, thus yielding more stable products. Findings of the present study highlighted certain classes of polyphenols as promising sequestering agents of alpha,beta-unsaturated aldehydes to inhibit or restrain carbonyl stress-associated diseases.


Assuntos
Acroleína/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Flavonoides/química , Peroxidação de Lipídeos , Fenóis/química , Acroleína/toxicidade , Aldeídos/toxicidade , Cromatografia Líquida , Reagentes de Ligações Cruzadas/toxicidade , Conformação Molecular , Floretina/química , Polifenóis , Espectrometria de Massas em Tandem
8.
Chem Res Toxicol ; 22(8): 1483-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19639978

RESUMO

Chemical model reactions were carried out to investigate the effect of a citrus flavonoid, naringenin, on the formation of acrylamide under mild heating conditions. Results showed that naringenin significantly and dose dependently inhibited the formation of acrylamide (20-50% relative to the control), although not in a linear manner. Moreover, the presence of naringenin in acrylamide-producing models effectively reduced the extent of browning. Careful comparison of the HPLC chromatograms of samples from the chemical model reactions revealed that naringenin likely reacted with Maillard intermediates, giving rise to new derivatives. Subsequent LC-MS analyses suggested that the proposed derivatives have a predicted molecular mass of 341 Da. Eventually, two derivatives were purified and characterized with LC-MS/MS and NMR spectroscopy as 8-C-(E-propenamide)naringenin and 6-C-(E-propenamide)naringenin, respectively. In other words, naringenin, a rather weak antioxidant, strongly inhibited acrylamide formation probably by directly reacting with acrylamide precursors, thus diverting them from the pathways that lead to acrylamide formation.


Assuntos
Acrilamida/síntese química , Carcinógenos/metabolismo , Flavanonas/farmacologia , Manipulação de Alimentos , Reação de Maillard/efeitos dos fármacos , Acrilamida/metabolismo , Animais , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Flavanonas/química , Flavanonas/uso terapêutico , Contaminação de Alimentos/prevenção & controle , Temperatura Alta , Humanos , Modelos Químicos , Estrutura Molecular , Mutagênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA