Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 598: 217116, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39002694

RESUMO

Cisplatin is one of the most commonly used drugs for cancer treatment. Despite much progress in improving patient outcomes, many patients are resistant to cisplatin-based treatments, leading to limited treatment efficacy and increased treatment failure. The fact that solid tumors suffer from hypoxia and an inadequate blood supply in the tumor microenvironment has been widely accepted for decades. Numerous studies have shown that a hypoxic microenvironment significantly reduces the sensitivity of tumor cells to cisplatin. Therefore, understanding how hypoxia empowers tumor cells with cisplatin resistance is essential. In the fight against tumors, developing innovative strategies for overcoming drug resistance has attracted widespread interest. Natural products have historically made major contributions to anticancer drug research due to their obvious efficacy and abundant candidate resources. Intriguingly, natural products show the potential to reverse chemoresistance, which provides new insights into cisplatin resistance in the hypoxic tumor microenvironment. In this review, we describe the role of cisplatin in tumor therapy and the mechanisms by which tumor cells generate cisplatin resistance. Subsequently, we call attention to the linkage between the hypoxic microenvironment and cisplatin resistance. Furthermore, we summarize known and potential natural products that target the hypoxic tumor microenvironment to overcome cisplatin resistance. Finally, we discuss the current challenges that limit the clinical application of natural products. Understanding the link between hypoxia and cisplatin resistance is the key to unlocking the full potential of natural products, which will serve as new therapeutic strategies capable of overcoming resistance.

2.
Chem Commun (Camb) ; 59(57): 8866, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37395103

RESUMO

Correction for 'Pyrrolopyrrole aza-BODIPY near-infrared photosensitizer for dual-mode imaging-guided photothermal cancer therapy' by Chaolong Wu et al., Chem. Commun., 2019, 55, 790-793, https://doi.org/10.1039/C8CC07768A.

3.
Metabolism ; 138: 155340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302455

RESUMO

BACKGROUND: Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown. METHODS: We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice. RESULTS: We report that DPP4 binds to IGF2-R on Treg cell surface and activates PKA/SP1 signaling, which upregulate ERp29 expression and promote its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting mitochondria-associated ER membrane formation and mitochondria calcium overload in Tregs. This, in turn, impairs Tregs function and polarizes microglia toward a pro-inflammatory phenotype in the hippocampus and finally leads to neuroinflammation and cognitive impairment in type 2 diabetes. Importantly, inhibiting DPP4 enzymatic activity in type 2 diabetic patients or mutating DPP4 enzymatic active site in db/db mice did not reverse these changes. However, IGF-2R knockdown or blockade ameliorated these effects both in vivo and in vitro. CONCLUSION: These findings highlight the nonenzymatic role of DPP4 in impairing Tregs function, which may facilitate the design of novel immunotherapies for diabetes-associated cognitive impairment.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Dipeptidil Peptidase 4 , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Microglia/metabolismo , Linfócitos T Reguladores/metabolismo
4.
BMC Bioinformatics ; 22(Suppl 3): 457, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560840

RESUMO

BACKGROUND: As one of the deadliest diseases in the world, cancer is driven by a few somatic mutations that disrupt the normal growth of cells, and leads to abnormal proliferation and tumor development. The vast majority of somatic mutations did not affect the occurrence and development of cancer; thus, identifying the mutations responsible for tumor occurrence and development is one of the main targets of current cancer treatments. RESULTS: To effectively identify driver genes, we adopted a semi-local centrality measure and gene mutation effect function to assess the effect of gene mutations on changes in gene expression patterns. Firstly, we calculated the mutation score for each gene. Secondly, we identified differentially expressed genes (DEGs) in the cohort by comparing the expression profiles of tumor samples and normal samples, and then constructed a local network for each mutation gene using DEGs and mutant genes according to the protein-protein interaction network. Finally, we calculated the score of each mutant gene according to the objective function. The top-ranking mutant genes were selected as driver genes. We name the proposed method as mutations effect and network centrality. CONCLUSIONS: Four types of cancer data in The Cancer Genome Atlas were tested. The experimental data proved that our method was superior to the existing network-centric method, as it was able to quickly and easily identify driver genes and rare driver factors.


Assuntos
Neoplasias , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/genética
5.
Biomaterials ; 221: 119422, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437723

RESUMO

Highly specific and effective cancer phototherapy remains as a great challenge. Herein, a smart nanoplatform (TENAB NP) sequentially responsive to light, low pH and hypoxia is demonstrated for multi-mode imaging guided synergistic cancer therapy with negligible skin phototoxicity. Upon 808-nm laser irradiation, TENAB NPs can generate hyperthermia to melt the phase change material (PCM-LASA) coat and thereafter release chemo-drug tirapazamine (TPZ). Meanwhile, under acidic pH, photosensitizer ENAB would turn "off" its charge-transfer state, generating prominent 1O2 for photodynamic therapy (PDT) and heat for photothermal therapy (PTT), respectively. Accompanied with PDT-induced hypoxia, the released TPZ can be activated into its cytotoxic form for tumor cells killing. Notably, owing to phase change material LASA coat and ENAB's pH sensitivity, TENAB NPs show negligible photosensitization to skin and normal tissues. As the multi-stimuli responsive mechanism, TENAB NPs demonstrate a promising future in cancer photo-chemo theranostics with excellent skin protection.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Animais , Álcoois Graxos/química , Feminino , Células HeLa , Humanos , Ácido Linoleico/química , Camundongos , Camundongos Nus , Microscopia Confocal , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Tirapazamina/uso terapêutico
6.
Clin Cancer Res ; 25(14): 4530-4541, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940655

RESUMO

PURPOSE: Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity. EXPERIMENTAL DESIGN: Flow cytometry-based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy in vitro and in vivo were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti-PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. RESULTS: Through screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, in vitro and in vivo, strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET-Src axis, regorafenib potently inhibited JAK1/2-STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response. CONCLUSIONS: Our data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Melanoma/imunologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Neoplasias Cutâneas/imunologia , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
ACS Appl Bio Mater ; 2(12): 5888-5897, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021510

RESUMO

Photoactivated cancer therapeutic methods emerging in recent decades, such as photothermal therapy (PTT) and photodynamic therapy (PDT), have drawn worldwide research interest. Herein, a smart near-infrared (NIR) photosensitizer 4-(4-(7-(4-Bromophenyl)-1,9-bis(3,4-dimethoxyphenyl)-5,5-difluoro-5H-5l4,6l4-dipyrrolo[1,2-c:2',1'-f][1,3,5,2]triazaborinin-3-yl)phenyl)morpholine (MAB) with morpholine decorating on the aza-BODIPY core is synthesized to achieve dual-modal imaging-guided synergistic PDT/PTT, exhibiting a tumor microenvironment (TME) enhanced cancer theranostic performance. The introduction of electron-donating morpholine offers MAB-enhanced intramolecular charge transfer (ICT) and a pronounced red-shift with maximum absorption peak (λmax) at 730 nm. After encapsulating with amphiphilic polymer DSPE-mPEG2000, as-obtained MAB nanoparticles (NPs) with good biocompatibility can enrich targeting in the lysosomes of tumor cells and afterward be activated under the acidic microenvironment inside the lysosome (pH 5.0) to generate intracellular reactive oxygen species (ROS) for enhanced PDT through interruption of photoinduced electron transfer (PET). Through in vitro cytotoxicity assay studies, the half-maximal inhibitory concentration (IC50) of MAB NPs under irradiation with the 730 nm laser is ∼10 µg/mL, indicating an excellent phototherapy effect. Furthermore, an in vivo study illustrates a prominent PDT/PTT synergistic therapeutic effect, and MAB NPs can be rapidly metabolized.

8.
J Cell Physiol ; 234(3): 2618-2630, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30191969

RESUMO

Paris polyphylla var. yunnanensis, named Chong Lou, is considered an antitumor substance. In this study, we investigated the effect of PP-22, a monomer purified from P. polyphylla var. yunnanensis, on the nasopharyngeal carcinoma cell line CNE-2 in vitro. The results showed that PP-22 could inhibit the proliferation of CNE-2 cells via the induction of apoptosis, with evidence of the characteristic morphological changes in the apoptosis in the nucleus and an increase in Annexin V-positive cells. In addition, we found that PP-22 could activate the p38 mitogen-activated protein kinase (MAPK) pathway and that this activation was reversed by SB203580, a specific inhibitor of the p38 MAPK pathway. In contrast, PP-22 promoted apoptosis via an intrinsic pathway, including the endoplasmic reticulum stress pathway, in a caspase-dependent manner. A further study showed that PP-22 also induced apoptosis by downregulating the signal transducers and activators of transcription 3 (STAT3) pathway, and the inhibitory effect was also confirmed by STAT3 small interfering RNA. In addition, PP-22 could promote autophagy by inhibiting the extracellular regulated protein kinases (ERK) pathway. And autophagy plays a protective role against apoptosis. Together, these data show that PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma CNE-2 cell line.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Saponinas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Chem Commun (Camb) ; 55(6): 790-793, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30569923

RESUMO

A NIR photosensitizer pyrrolopyrrole aza-BODIPY (PPAB) was synthesized in a straightforward manner. Through the use of PPAB NPs as a photothermal agent, photoacoustic imaging (PAI) and NIR fluorescence imaging (NIR-FI) can be achieved in vivo. In addition, the photothermal ablation of tumor cells can be realized both in vitro and in vivo, even at a low concentration (0.5 mg kg-1).


Assuntos
Compostos de Boro/química , Neoplasias/terapia , Fármacos Fotossensibilizantes/química , Pirróis/química , Animais , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imagem Óptica , Técnicas Fotoacústicas , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Transplante Heterólogo
10.
Chem Sci ; 9(42): 8103-8109, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542560

RESUMO

Emerging treatment approaches, such as gas therapy (GT), photodynamic therapy (PDT) and photothermal therapy (PTT), have received widespread attention. The development of an intelligent multifunctional nano-platform responding to tumor microenvironments for multimodal therapy is highly desirable. Herein, a near-infrared (NIR) light-responsive nitric oxide (NO) photodonor (4-nitro-3-trifluoromethylaniline, NF) and a pH-sensitive group (dimethylaminophenyl) have been introduced into a diketopyrrolopyrrole core (denoted as DPP-NF). The DPP-NF nanoparticles (NPs) can be activated under weakly acidic conditions of lysosomes (pH 4.5-5.0) to generate reactive oxygen species (ROS) and enhance photothermal efficiency. The fluorescence detection demonstrated that NO controllable release can be realized by "on-off" switching of the NF unit under NIR light irradiation or dark conditions. The controllable NO release of DPP-NF NPs can not only trigger tumor cell death by DNA damage, but also overcome PDT inefficiencies caused by hypoxia in tumors. Additionally, DPP-NF NPs displayed 45.6% photothermal conversion efficiency, making them superior to other reported DPP derivatives. In vitro studies showed that DPP-NF NPs possessed low dark toxicity and high phototoxicity with a half-maximal inhibitory concentration of about 38 µg mL-1. In vivo phototherapy indicated that DPP-NF NPs exhibited excellent tumor phototherapeutic efficacy with passive targeting of the tumor site via the enhanced permeability and retention (EPR) effect. These results highlight that the nano-platform has promising potential for NO-mediated multimodal synergistic phototherapy in clinical settings.

11.
Biomaterials ; 183: 1-9, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142531

RESUMO

To overcome irradiation-dependence of cancer phototherapy, a near infrared aza-BODIPY-based photothermogenic photosensitizer BDY with 2-Pyridone group has been synthesized for imaging-guided photothermal synergistic sustainable photodynamic therapy. Multifunctional water-soluble BDY nanoparticles (NPs), with high photothermal conversion efficiency of 35.7% and excellent singlet oxygen (1O2) generation ability, are prepared by self-assembling. The reversible transformation between 2-pyridone moiety and its endoperoxide form endows BDY with continuous 1O2 generation ability under illumination and non-illumination conditions. Simultaneously, BDY NPs exhibit excellent tumor targeting properties by enhanced permeability and retention (EPR) effect and photoacoustic imaging (PAI) ability. Furthermore, the photothermal assisted sustainable photodynamic therapy can significantly inhibit tumor growth (93.4% inhibition) with almost no side effects by intermittent laser illumination. The finding highlights that this photothermal synergistic sustainable phototherapy presents great potential for clinical applications.


Assuntos
Compostos de Boro/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fármacos Fotossensibilizantes/química , Piridonas/química , Animais , Materiais Biocompatíveis/química , Compostos de Boro/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos Nus , Imagem Óptica/métodos , Permeabilidade , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete/metabolismo , Distribuição Tecidual
12.
J Mater Chem B ; 6(27): 4522-4530, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254669

RESUMO

Mitochondria targeted phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has excelled as an effective approach among other non-specific techniques for its high selectivity, non-invasiveness and low systemic toxicity. Derivatives of porphyrins, indocyanine dyes and rhodamine are widely utilized for cancer PDT or PTT. However, limitations, such as hypoxia and heat resistance of PDT and PTT, have restricted their efficacy in tumor treatment, making it urgent to develop highly efficient theranostic agents with synergistic effects. Aza-boron-dipyrromethene (aza-BODIPY) has shown promising prospects for synergistic phototherapy due to its outstanding reactive oxygen species (ROS) generation and photothermal effect. Herein, we designed and synthesized a near-infrared (NIR) aza-BODIPY derivative MeOABBr (ΦΔ = 84%). By encapsulating it with polyethylene glycol-folic acid (PEG-FA) and polyethylene glycol-triphenylphosphonium (PEG-TPP), tumor and mitochondria dual targeting nanoparticles (FMAB NPs) have been obtained. Triggered by NIR irradiation, FMAB NPs could generate ROS and hyperthermia (η = 40%) to cause mitochondrial dysfunction, resulting in cell apoptosis. Simultaneously, FMAB NPs, with unique optical properties, can be monitored precisely by photoacoustic, fluorescence and photothermal imaging in vivo. In particular, as proved by both in vitro and in vivo experiments, tumor-mitochondria dual targeted FMAB NPs exhibit high phototherapeutic efficacy without toxicity to normal tissues.

13.
J Mater Chem B ; 6(45): 7402-7410, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254741

RESUMO

"Theranostics" become increasingly significant in current personalized precision medicine. Herein, we developed a new NIR-absorbing photo-theranostic agent based on water-soluble diketopyrrolopyrrole (DPP) conjugated polymer (WSCP) dots. The WSCPs can be easily self-assembled into WSCP dots under ultrasonication only, instead of any other nano-technology. Compared to the monomers of WSCPs, WSCP dots have no fluorescence emission but produce photoacoustic (PA) signal detected upon laser irradiation due to the reduced energy loss from excited state. PA imaging in vivo indicated that WSCP dots can accumulate at tumor site within 4 h post-injection. More importantly, WSCP dots not only generate heat with a photothermal conversion efficiency of ∼54%, but also produce reactive oxygen species (ROS, QY ∼13%). Furthermore, in vitro and in vivo experiments confirmed effective inhibition of tumor growth by WSCP dots via synergetic photothermal/photodynamic therapy. All results indicate a great potential of WSCP dots as highly efficient theranostic agents in PA imaging-guided synergetic cancer treatment.

14.
Materials (Basel) ; 9(5)2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28773504

RESUMO

A series of arene Ru(II) complexes coordinated with phenanthroimidazole derivatives, [(η6-C6H6)Ru(l)Cl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenyl)imidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenyl)imidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenyl)imidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl) imidazole [4,5f] 1,10-phenanthroline) were synthesized in yields of 89.9%-92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II) complexes (1b, 2b, 3b, 4b). The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 µM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.

15.
Mol Med Rep ; 11(1): 454-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323629

RESUMO

microRNA (miR)-22 has been reported to be downregulated in hepatocellular, lung, colorectal, ovarian and breast cancer, acting as a tumor suppressor. The present study investigated the potential effects of miR-22 on gastric cancer invasion and metastasis and the molecular mechanism. miR-22 expression was examined in tumor tissues of in 89 gastric cancer patients by in situ hybridization (ISH) analysis. Additionally, the association between miR-22 levels and clinicopathological parameters was analyzed. A luciferase assay was conducted for target identification. The ability of invasion and metastasis of gastric cancer cells in vitro and in vivo was evaluated by cell migration and invasion assays and in a xenograft model. The results showed that miR-22 was downregulated in the gastric cancer specimens and significantly correlated with the advanced clinical stage and lymph node metastasis. In addition, metadherin (MTDH) was shown to be a direct target of miR-22 and the expression of MTDH was inversely correlated with miR-22 expression in gastric cancer. Ectopic expression of miR-22 suppressed cell invasion and metastasis in vitro and in vivo. The present study suggested that miR-22 may be a valuable prognostic factor in gastric cancer. miR-22 inhibited gastric cancer cell invasion and metastasis by directly targeting MTDH. The novel miR-22/MTDH link confirmed in the present study provided a novel, potential therapeutic target for the treatment of gastric cancer.


Assuntos
Moléculas de Adesão Celular/genética , MicroRNAs/genética , Interferência de RNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Metástase Linfática , Proteínas de Membrana , Metástase Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/genética , Proteínas de Ligação a RNA
16.
Zhonghua Zhong Liu Za Zhi ; 35(7): 497-500, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24257299

RESUMO

OBJECTIVE: To explore the molecular mechanism of miR-124 suppressing the proliferation and invasion of gastric cancer cells. METHODS: SPHK1 3'UTR-luciferase vector was constructed and luciferase reporter gene assay was employed to examine the effect of miR-124 on luciferase activity. Human gastric cancer MGC-803 cells were transfected with miR-124 mimics, and then Western blot was performed to detect the expression of SPHK1 protein. RESULTS: Luciferase reporter vector system confirmed that SPHK1 was a target gene of miR-124. Western blot showed that the expression of SPHK1 protein was inhibited by miR-124. After transfection of miR-124 mimics or SPHK1 siRNA for 12 h, 24 h and 48 h, respectively, MTT assay showed that the A values of the three groups were significantly different (P < 0.05), and it was in a time-dependent manner. After transfection of miR-124 mimics or SPHK1 siRNA for 24 h, transwell invasion assay showed that the number of transmembrane cells was 54.6 ± 8.3 in the SPHK1 siRNA group and 47.8 ± 6.6 in the miR-124 mimics group, both were significantly lower than 100.6 ± 11.3 of the control group (P < 0.05), indicating that SPHK1 siRNA can slow down the invasion of MGC-803 cells. CONCLUSION: miR-124 can suppress the cell proliferation and invasion by targeting SPHK1 in gastric carcinoma.


Assuntos
Proliferação de Células , MicroRNAs/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Luciferases/genética , Luciferases/metabolismo , Invasividade Neoplásica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Neoplasias Gástricas/metabolismo , Transfecção
17.
Clin Cancer Res ; 19(20): 5602-12, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23995857

RESUMO

PURPOSE: The purpose of this study was to investigate the clinicopathologic significance and potential role of miR-200b and miR-200c in the development and progression of gastric cancer. EXPERIMENTAL DESIGN: We examined miR-200b and miR-200c expression in 36 paired normal and stomach tumor specimens, as well as gastric cancer cell lines, by quantitative real-time PCR. In addition, miR-200b and miR-200c were detected by ISH using gastric cancer tissue microarrays, and the association between miR-200b and miR-200c levels and clinicopathologic factors and prognosis were analyzed. A luciferase assay was conducted for target evaluation. The functional effects of miR-200b and miR-200c on gastric cancer cells were validated by a cell proliferation assay and cell invasion and migration assays. RESULTS: miR-200b and miR-200c were downregulated in the gastric cancer specimens and cell lines tested. miR-200b and miR-200c levels were significantly correlated with the clinical stage, T stage, lymph node metastasis, and survival of patients. Ectopic expression of miR-200b and miR-200c impaired cell growth and invasion. In addition, when overexpressed, miR-200b and miR-200c commonly directly targeted DNMT3A, DNMT3B, and SP1 (a transactivator of the DNMT1 gene), which resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at the protein level. This effect, in turn, led to a decrease in global DNA methylation and reexpression of p16, RASS1A1, and E-cadherin via promoter DNA hypomethylation. CONCLUSION: Our findings suggest that miR-200b and miR-200c, as valuable markers of gastric cancer prognosis, may be a promising approach to human gastric cancer treatment.


Assuntos
MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adulto , Idoso , Pareamento de Bases , Sequência de Bases , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Progressão da Doença , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , MicroRNAs/química , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias Gástricas/mortalidade , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA