Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Neuromuscul Disord ; 33(7): 570-574, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348244

RESUMO

IgG4-Related Disease (IgG4-RD)is a chronic fibroinflammatory disease typically characterized by inflammation or tumefaction of the organs involved. Skeletal muscle is not one of the typical organs involved in IgG4-RD. Isolated myositis related to IgG4-RD without common organ involvement such as lacrimal or salivary glands or retroperitoneal fibrosis is a controversial and debatable entity. Here we report a case of inflammatory myopathy in an elderly woman with several atypical clinical, lab, and histopathological findings suggestive of IgG4-related myositis. Two such case reports of IgG4-related myositis were reported in the literature review. This is a third case report of elevated IgG4 positive plasma cell infiltration in muscle with severe endomysial fibrosis and unusual myositis features (Figs. 1 and 2). This case-based review opens a possibility of a novel presentation of IgG4-RD and new pathogenesis in myositis.


Assuntos
Doenças Autoimunes , Doença Relacionada a Imunoglobulina G4 , Miosite , Idoso , Feminino , Humanos , Doenças Autoimunes/patologia , Imunoglobulina G , Doença Relacionada a Imunoglobulina G4/diagnóstico , Inflamação , Músculo Esquelético/patologia , Miosite/diagnóstico
2.
Neurohospitalist ; 13(1): 90-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36531853

RESUMO

A 31-year-old woman with transthyretin (TTR) amyloidosis secondary to a Thr60Ala mutation developed recurrent stroke-like episodes with fluctuating mental status. Evaluation for stroke and seizures was unrevealing. She was found to have leptomeningeal contrast enhancement on magnetic resonance imaging, which was confirmed to be CNS TTR amyloidosis on histopathology following brain and dura biopsy. While leptomeningeal disease has rarely been known to be associated with TTR amyloidosis, this is the first documented case of leptomeningeal disease secondary to a Thr60Ala mutation in the TTR gene. A literature review of TTR amyloidosis is presented with special focus on the treatment of leptomeningeal TTR amyloidosis.

3.
J Neurol Neurosurg Psychiatry ; 92(11): 1186-1196, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34103343

RESUMO

BACKGROUND: We used a multimodal approach including detailed phenotyping, whole exome sequencing (WES) and candidate gene filters to diagnose rare neurological diseases in individuals referred by tertiary neurology centres. METHODS: WES was performed on 66 individuals with neurogenetic diseases using candidate gene filters and stringent algorithms for assessing sequence variants. Pathogenic or likely pathogenic missense variants were interpreted using in silico prediction tools, family segregation analysis, previous publications of disease association and relevant biological assays. RESULTS: Molecular diagnosis was achieved in 39% (n=26) including 59% of childhood-onset cases and 27% of late-onset cases. Overall, 37% (10/27) of myopathy, 41% (9/22) of neuropathy, 22% (2/9) of MND and 63% (5/8) of complex phenotypes were given genetic diagnosis. Twenty-seven disease-associated variants were identified including ten novel variants in FBXO38, LAMA2, MFN2, MYH7, PNPLA6, SH3TC2 and SPTLC1. Single-nucleotide variants (n=10) affected conserved residues within functional domains and previously identified mutation hot-spots. Established pathogenic variants (n=16) presented with atypical features, such as optic neuropathy in adult polyglucosan body disease, facial dysmorphism and skeletal anomalies in cerebrotendinous xanthomatosis, steroid-responsive weakness in congenital myasthenia syndrome 10. Potentially treatable rare diseases were diagnosed, improving the quality of life in some patients. CONCLUSIONS: Integrating deep phenotyping, gene filter algorithms and biological assays increased diagnostic yield of exome sequencing, identified novel pathogenic variants and extended phenotypes of difficult to diagnose rare neurogenetic disorders in an outpatient clinic setting.


Assuntos
Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Mutação , Doenças do Sistema Nervoso/diagnóstico , Doenças Raras/diagnóstico , Adolescente , Adulto , Idoso , Doenças Genéticas Inatas/genética , Humanos , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Doenças do Sistema Nervoso/genética , Linhagem , Fenótipo , Doenças Raras/genética , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468672

RESUMO

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Assuntos
Bortezomib/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Animais , Antineoplásicos/efeitos adversos , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Larva/efeitos dos fármacos , Larva/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Peixe-Zebra/genética
5.
Cancer Med ; 9(18): 6766-6775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32730698

RESUMO

Nearly 80% of advanced cancer patients are afflicted with cachexia, a debilitating syndrome characterized by extensive loss of muscle mass and function. Cachectic cancer patients have a reduced tolerance to antineoplastic therapies and often succumb to premature death from the wasting of respiratory and cardiac muscles. Since there are no available treatments for cachexia, it is imperative to understand the mechanisms that drive cachexia in order to devise effective strategies to treat it. Although 25% of metastatic breast cancer patients develop symptoms of muscle wasting, mechanistic studies of breast cancer cachexia have been hampered by a lack of experimental models. Using tumor cells deficient for BARD1, a subunit of the BRCA1/BARD1 tumor suppressor complex, we have developed a new orthotopic model of triple-negative breast cancer that spontaneously metastasizes to the lung and leads to systemic muscle deterioration. We show that expression of the metal-ion transporter, Zip14, is markedly upregulated in cachectic muscles from these mice and is associated with elevated intramuscular zinc and iron levels. Aberrant Zip14 expression and altered metal-ion homeostasis could therefore represent an underlying mechanism of cachexia development in human patients with triple-negative breast cancer. Our study provides a unique model for studying breast cancer cachexia and identifies a potential therapeutic target for its treatment.


Assuntos
Caquexia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Neoplasias Pulmonares/metabolismo , Músculo Esquelético/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Proteína BRCA1/metabolismo , Caquexia/genética , Caquexia/patologia , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Músculo Esquelético/patologia , Norisoprenoides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Zinco/metabolismo
6.
J Neurol ; 267(3): 823-829, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31776719

RESUMO

Leber hereditary optic neuropathy (LHON) typically presents as painless central or centrocecal scotoma and is due to maternally inherited mitochondrial DNA (mtDNA) mutations. Over 95% of LHON cases are caused by one of three mtDNA "common" point mutations: m.3460G>A, m.11778G>A, or m.14484T>C, which are all in genes encoding structural subunits of complex I of the respiratory chain. Intriguing features of LHON include: incomplete penetrance, tissue specificity, and male predominance, indicating that additional genetic or environmental factors are modulating the phenotypic expression of the pathogenic mtDNA mutations. However, since its original description as a purely ophthalmological disorder, LHON has also been linked to multisystemic conditions with variable neurological, cardiac, and skeletal abnormalities. Although double "common" mutations have been reported to cause LHON and LHON-plus, they are extremely rare. Here, we present a patient with an unusual double point mutation (m.11778 G>A and m.14484T>C) with a multisystemic LHON-plus phenotype characterized by: optic neuropathy, ptosis, ataxia, dystonia, dysarthria, and recurrent extensive transverse myelitis.


Assuntos
Distonia/genética , Distonia/patologia , Mielite Transversa/patologia , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Adulto , Humanos , Masculino , Mielite Transversa/etiologia , Mutação Puntual
7.
Cancers (Basel) ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861290

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type in which the mortality rate approaches the incidence rate. More than 85% of PDAC patients experience a profound loss of muscle mass and function, known as cachexia. PDAC patients with this condition suffer from decreased tolerance to anti-cancer therapies and often succumb to premature death due to respiratory and cardiac muscle wasting. Yet, there are no approved therapies available to alleviate cachexia. We previously found that upregulation of the metal ion transporter, Zip14, and altered zinc homeostasis are critical mediators of cachexia in metastatic colon, lung, and breast cancer models. Here, we show that a similar mechanism is likely driving the development of cachexia in PDAC. In two independent experimental metastasis models generated from the murine PDAC cell lines, Pan02 and FC1242, we observed aberrant Zip14 expression and increased zinc ion levels in cachectic muscles. Moreover, in advanced PDAC patients, high levels of ZIP14 in muscles correlated with the presence of cachexia. These studies underscore the importance of altered ZIP14 function in PDAC-associated cachexia development and highlight a potential therapeutic opportunity for improving the quality of life and prolonging survival in PDAC patients.

8.
Hum Mol Genet ; 28(15): 2486-2500, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009944

RESUMO

Mutations in LMNA encoding lamin A/C and EMD encoding emerin cause cardiomyopathy and muscular dystrophy. Lmna null mice develop these disorders and have a lifespan of 7-8 weeks. Emd null mice show no overt pathology and have normal skeletal muscle but with regeneration defects. We generated mice with germline deletions of both Lmna and Emd to determine the effects of combined loss of the encoded proteins. Mice without lamin A/C and emerin are born at the expected Mendelian ratio, are grossly normal at birth but have shorter lifespans than those lacking only lamin A/C. However, there are no major differences between these mice with regards to left ventricular function, heart ultrastructure or electrocardiographic parameters except for slower heart rates in the mice lacking both lamin A/C and emerin. Skeletal muscle is similarly affected in both of these mice. Lmna+/- mice also lacking emerin live to at least 1 year and have no significant differences in growth, heart or skeletal muscle compared to Lmna+/- mice. Deletion of the mouse gene encoding lamina-associated protein 1 leads to prenatal death; however, mice with heterozygous deletion of this gene lacking both lamin A/C and emerin are born at the expected Mendelian ratio but had a shorter lifespan than those only lacking lamin A/C and emerin. These results show that mice with combined deficiencies of three interacting nuclear envelope proteins have normal embryonic development and that early postnatal defects are primarily driven by loss of lamin A/C or lamina-associated polypeptide 1 rather than emerin.


Assuntos
Proteínas de Transporte/genética , Coração/fisiopatologia , Lamina Tipo A/genética , Proteínas de Membrana/genética , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Proteínas Nucleares/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia
9.
J Clin Neuromuscul Dis ; 20(3): 120-128, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30801482

RESUMO

Transthyretin amyloidosis patients develop length-dependent peripheral neuropathy, autonomic dysfunction, and restrictive cardiomyopathy associated with deposition of amyloid fibrils in these tissues. Despite advances in management over the past decade, this disorder causes profound debilitation and ultimately proves fatal. In this report, we describe a man with late-onset cardiac amyloidosis due to a transthyretin Thr60Ala mutation who was treated with an investigational RNAi therapeutic, revusiran, which targets hepatic transthyretin production. Sixteen months into treatment, he developed bilateral lower-extremity weakness and numbness, worsening balance, difficulty manipulating objects with his hands, and finger numbness. Nerve conduction studies were consistent with multifocal demyelinating neuropathy. Intravenous immunoglobulin therapy improved sensation in his hands and feet, and improved hand dexterity. A sural nerve biopsy demonstrated demyelination with substantial axonal loss in the absence of histologically detectable endoneurial amyloid deposition. This case expands the clinicopathologic spectrum of transthyretin amyloidosis and may represent complex disease and treatment effects.


Assuntos
Neuropatias Amiloides Familiares/complicações , Neuropatias Amiloides Familiares/tratamento farmacológico , Pré-Albumina/genética , RNA Interferente Pequeno/uso terapêutico , Idoso , Neuropatias Amiloides/complicações , Neuropatias Amiloides/etiologia , Neuropatias Amiloides Familiares/genética , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/etiologia , Humanos , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Mutação/genética , Nervo Sural/patologia , Nervo Sural/ultraestrutura
10.
Nat Med ; 24(6): 770-781, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875463

RESUMO

Patients with metastatic cancer experience a severe loss of skeletal muscle mass and function known as cachexia. Cachexia is associated with poor prognosis and accelerated death in patients with cancer, yet its underlying mechanisms remain poorly understood. Here, we identify the metal-ion transporter ZRT- and IRT-like protein 14 (ZIP14) as a critical mediator of cancer-induced cachexia. ZIP14 is upregulated in cachectic muscles of mice and in patients with metastatic cancer and can be induced by TNF-α and TGF-ß cytokines. Strikingly, germline ablation or muscle-specific depletion of Zip14 markedly reduces muscle atrophy in metastatic cancer models. We find that ZIP14-mediated zinc uptake in muscle progenitor cells represses the expression of MyoD and Mef2c and blocks muscle-cell differentiation. Importantly, ZIP14-mediated zinc accumulation in differentiated muscle cells induces myosin heavy chain loss. These results highlight a previously unrecognized role for altered zinc homeostasis in metastatic cancer-induced muscle wasting and implicate ZIP14 as a therapeutic target for its treatment.


Assuntos
Caquexia/metabolismo , Caquexia/patologia , Proteínas de Transporte de Cátions/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Regulação para Cima , Animais , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo , Metástase Neoplásica , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Zinco/metabolismo
11.
Hum Mol Genet ; 27(19): 3305-3312, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917077

RESUMO

Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.


Assuntos
Doença de Leigh/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Trifosfato de Adenosina/biossíntese , Criança , Pré-Escolar , Dimerização , Éxons/genética , Efeito Fundador , Frequência do Gene , Haplótipos , Humanos , Lactente , Recém-Nascido , Judeus/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação , Fosforilação Oxidativa , Sítios de Splice de RNA/genética , Sequenciamento do Exoma
12.
Am J Case Rep ; 18: 700-706, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28642454

RESUMO

BACKGROUND Sporadic inclusion body myositis (IBM) is the most common acquired myopathy seen in adults aged over 50 years, with a prevalence estimated at between 1 and 70 per million. Weakness of the diaphragm with loss of vital capacity is almost universal in IBM. This is almost always asymptomatic. When respiratory complications occur, they are most often due to aspiration. Respiratory failure due to diaphragmatic weakness is exceptionally rare, particularly as the presenting symptom of the disease. It is not currently considered to be a paraneoplastic syndrome. CASE REPORT Our patient presented with hypercarbic respiratory failure. This is the first such reported case without signs of weakness elsewhere of which we are aware. We suspected IBM based on her history of progressive weakness and findings on electromyography. There was a delay of 5 years in obtaining biopsy for confirmation, during which she presented with recurrent episodes of respiratory failure despite using non-invasive ventilation. An autopsy revealed the presence of papillary thyroid carcinoma with spread to local lymph nodes. On the basis that these co-morbidities are unlikely to have occurred by chance (we estimate 1×10-17), we hypothesize that IBM may be a paraneoplastic condition. We acknowledge that proof would require demonstrating a pathogenic antibody. CONCLUSIONS IBM should be considered in older patients (age >45) presenting with otherwise unexplained respiratory failure. A workup for possible malignancy in this setting appears reasonable.


Assuntos
Carcinoma Papilar/patologia , Metástase Linfática/patologia , Miosite de Corpos de Inclusão/diagnóstico , Síndromes Paraneoplásicas/diagnóstico , Insuficiência Respiratória/etiologia , Neoplasias da Glândula Tireoide/patologia , Autopsia , Feminino , Humanos , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide
13.
J Neurosurg Pediatr ; 20(1): 56-63, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28452654

RESUMO

Herpes simplex virus (HSV) encephalitis can manifest with different clinical presentations, including acute monophasic illness and biphasic chronic granulomatous HSV encephalitis. Chronic encephalitis is much less common, and very rare late relapses are associated with intractable epilepsy and progressive neurological deficits with or without evidence of HSV in the cerebrospinal fluid. The authors report on an 8-year-old girl with a history of treated HSV-1 encephalitis when she was 13 months of age and focal epilepsy when she was 2 years old. Although free of clinical seizures, when she was 5, she experienced behavioral and academic dysfunction, which was later attributed to electrographic focal seizures and worsening electroencephalography (EEG) findings with electrical status epilepticus during slow-wave sleep (ESES). Following a right temporal lobectomy, chronic granulomatous encephalitis was diagnosed. The patient's clinical course improved with the resolution of seizures and EEG abnormalities.


Assuntos
Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/cirurgia , Encefalite por Herpes Simples/complicações , Herpesvirus Humano 1 , Lobectomia Temporal Anterior , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Criança , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Encefalite por Herpes Simples/diagnóstico por imagem , Encefalite por Herpes Simples/fisiopatologia , Encefalite por Herpes Simples/cirurgia , Feminino , Humanos
14.
Hum Mol Genet ; 26(1): 65-78, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798115

RESUMO

Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation and development by generating a conditional knockout mouse in which the protein is depleted from muscle progenitors at embryonic day 8.5 (Myf5-Lap1CKO mice). Although cultured myoblasts lacking LAP1 demonstrated defective terminal differentiation and altered expression of muscle regulatory factors, embryonic myogenesis and formation of skeletal muscle occurred in both mice with a Lap1 germline deletion and Myf5-Lap1CKO mice. However, skeletal muscle fibres were hypotrophic and their nuclei were morphologically abnormal with a wider perinuclear space than normal myonuclei. Myf5-Lap1CKO mouse skeletal muscle contained fewer satellite cells than normal and these cells had evidence of reduced myogenic potential. Abnormalities in signalling pathways required for postnatal hypertrophic growth were also observed in skeletal muscles of these mice. Our results demonstrate that early embryonic depletion of LAP1 does not impair myogenesis but that it is necessary for postnatal skeletal muscle growth.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Distrofias Musculares/embriologia , Mioblastos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fatores de Regulação Miogênica
15.
Orphanet J Rare Dis ; 10: 135, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471370

RESUMO

BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder.


Assuntos
Proteínas de Ciclo Celular/genética , Contratura/genética , Doenças Musculares/genética , Fibrose Pulmonar/genética , Esclerose/genética , Anormalidades da Pele/genética , Dermatopatias Genéticas/genética , Tendões/patologia , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Contratura/complicações , Contratura/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doenças Musculares/complicações , Doenças Musculares/diagnóstico , Mutação/genética , Fibrose Pulmonar/complicações , Fibrose Pulmonar/diagnóstico , Esclerose/complicações , Esclerose/diagnóstico , Anormalidades da Pele/complicações , Anormalidades da Pele/diagnóstico , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico
16.
J Clin Neuromuscul Dis ; 16(4): 202-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25996966

RESUMO

OBJECTIVES: Bortezomib is a proteasome inhibitor that is frequently used for multiple myeloma and lymphoma. A sensory predominant axonal neuropathy is associated with bortezomib treatment but a demyelinating neuropathy is also described primarily based on electrodiagnostic findings. We report a series of patients treated with bortezomib who developed peripheral neuropathy and were found to have demyelinating features on electrodiagnostic testing. METHODS: Four patients who developed a bortezomib-induced peripheral neuropathy underwent electrophysiological testing, and 1 patient had a nerve biopsy. RESULTS: The four patients with bortezomib-induced peripheral neuropathy had demyelinating features on their electrophysiological testing. The nerve biopsy performed in 1 patient demonstrated a demyelinating component in a background of axonal degeneration. CONCLUSIONS: Although most toxic neuropathies are symmetrical axonal neuropathies, bortezomib is part of a small list of agents that may cause a demyelinating polyneuropathy and axonal degeneration. These findings have been confirmed by nerve biopsy.


Assuntos
Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Doenças Desmielinizantes/induzido quimicamente , Condução Nervosa/fisiologia , Polineuropatias/induzido quimicamente , Adulto , Idoso , Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/fisiopatologia , Polineuropatias/patologia , Polineuropatias/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia
17.
Muscle Nerve ; 51(5): 767-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25430424

RESUMO

INTRODUCTION: Nemaline myopathy (NM) is a congenital neuromuscular disorder often characterized by hypotonia, facial weakness, skeletal muscle weakness, and the presence of rods on muscle biopsy. A rare form of nemaline myopathy known as Amish Nemaline Myopathy has only been seen in a genetically isolated cohort of Old Order Amish patients who may additionally present with tremors in the first 2-3 months of life. METHODS: We describe an Hispanic male diagnosed with nemaline myopathy histopathologically and subsequently confirmed by next generation gene sequencing. RESULTS: Direct sequencing revealed that he is homozygous for a pathogenic nonsense variant c.323C>G (p.S108X) in exon 9 of the TNNT1 gene. CONCLUSIONS: This report describes a novel pathogenic variant in the TNNT1 gene and represents a nemaline myopathy-causing variant in the TNNT1 gene outside of the Old Order Amish and Dutch ancestry.


Assuntos
Mutação/genética , Miopatias da Nemalina/genética , Troponina I/genética , Biópsia , Pré-Escolar , Éxons/genética , Hispânico ou Latino/genética , Homozigoto , Humanos , Masculino , Músculo Esquelético/patologia , Miopatias da Nemalina/diagnóstico , Linhagem
18.
Muscle Nerve ; 50(2): 292-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24711008

RESUMO

INTRODUCTION: A 61-year-old woman with a 5-year history of progressive muscle weakness and atrophy had a muscle biopsy characterized by a combination of dystrophic features (necrotic fibers and endomysial fibrosis) and mitochondrial alterations [ragged-red, cytochrome c oxidase (COX)-negative fibers]. METHODS: Sequencing of the whole mtDNA, assessment of the mutation load in muscle and accessible nonmuscle tissues, and single fiber polymerase chain reaction. RESULTS: Muscle mitochondrial DNA (mtDNA) sequencing revealed a novel heteroplasmic mutation (m.4403G>A) in the gene (MTTM) that encodes tRNA(Met). The mutation was not present in accessible nonmuscle tissues from the patient or 2 asymptomatic sisters. CONCLUSIONS: The clinical features and muscle morphology in this patient are very similar to those described in a previous patient with a different mutation, also in MTTM, which suggests that mutations in this gene confer a distinctive "dystrophic" quality. This may be a diagnostic clue in patients with isolated mitochondrial myopathy.


Assuntos
Distonia/genética , Miopatias Mitocondriais/genética , Mutação/genética , RNA de Transferência/genética , Distonia/complicações , Feminino , Humanos , Pessoa de Meia-Idade , Miopatias Mitocondriais/complicações
19.
Dev Cell ; 26(6): 591-603, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24055652

RESUMO

X-linked Emery-Dreifuss muscular dystrophy is caused by loss of function of emerin, an integral protein of the inner nuclear membrane. Yet emerin null mice are essentially normal, suggesting the existence of a critical compensating factor. We show that the lamina-associated polypeptide1 (LAP1) interacts with emerin. Conditional deletion of LAP1 from striated muscle causes muscular dystrophy; this pathology is worsened in the absence of emerin. LAP1 levels are significantly higher in mouse than human skeletal muscle, and reducing LAP1 by approximately half in mice also induces muscle abnormalities in emerin null mice. Conditional deletion of LAP1 from hepatocytes yields mice that exhibit normal liver function and are indistinguishable from littermate controls. These results establish that LAP1 interacts physically and functionally with emerin and plays an essential and selective role in skeletal muscle maintenance. They also highlight how dissecting differences between mouse and human phenotypes can provide fundamental insights into disease mechanisms.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Deleção de Genes , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/fisiologia , Proteínas de Membrana/genética , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Fator 3 Associado a Receptor de TNF/genética
20.
Acta Neuropathol ; 126(4): 595-601, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23942639

RESUMO

We report a rare case of peripheral T-cell lymphoma arising in a 52-year-old man with biopsy-proven aggressive polymyositis, who had cardiac involvement, progressive bulbar symptoms, and died 11 months post diagnosis due to multiorgan failure. Using a multimodality approach including immunohistochemistry, genome-wide single nucleotide polymorphism (SNP)-array analysis, and high-throughput sequencing of the complementary determining region 3 (CDR3) of T-cell receptor beta (TCRß) genes, our study demonstrates a molecular link between polymyositis and T-cell lymphoma, and provides evidence of the rapid and possibly late occurrence of genomic instability during neoplastic transformation of an oligoclonal T-cell population. Immunohistochemical analysis revealed loss of CD5, CD7, and CD8 antigen expression in autopsy tissue samples, as well as the occurrence of aberrant CD56 expression, not seen in pre-mortem biopsies, supporting the emergence of a neoplastic T-cell population. Multiplex polymerase chain reaction and next-generation sequencing of the TCRß CDR3 region displayed two unique T-cell clones in both the diagnostic biopsy confirming polymyositis and the autopsy muscle tissue exhibiting T-cell lymphoma, linking the two pathological processes. SNP-array analysis revealed complex genomic abnormalities at autopsy but not in the pre-mortem muscle biopsies displaying polymyositis, confirming malignant transformation of the oligoclonal T-cell infiltrate. Our findings raise the possibility that clinically aggressive polymyositis might represent a preneoplastic condition in some instances, similar to certain other autoimmune and inflammatory disorders.


Assuntos
Transformação Celular Neoplásica/patologia , Linfoma de Células T Periférico/complicações , Linfoma de Células T Periférico/patologia , Polimiosite/complicações , Linfócitos T/patologia , Antígenos CD/biossíntese , Antígenos CD/genética , Autopsia , Sequência de Bases , Encéfalo/patologia , Cardiomegalia/patologia , Evolução Fatal , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Debilidade Muscular/etiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Miocárdio/patologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Polimiosite/patologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA