RESUMO
Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFkB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.
Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/terapia , Redes Reguladoras de Genes , ImunoterapiaRESUMO
Network properties account for the complex relationship between genes, making it easier to identify complex patterns in their interactions. In this work, we leveraged these network properties for dual purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best concordance with histological subtypes, validated against three state-of-the-art methods. Second, to identify molecular targets that would be missed by more conventional methods of analysis, we applied a novel unsupervised method to cluster gene interactomes represented as networks in pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on a discrete notion of curvature. This provides a measure of the functional association among genes in the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we found non-trivial gene associations not previously identified.
Assuntos
Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma de Ewing/patologia , Proteína EWS de Ligação a RNA/metabolismo , Neoplasias de Tecidos Moles/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica c-fli-1/genética , Linhagem Celular TumoralRESUMO
Cancer transcriptional patterns exhibit both shared and unique features across diverse cancer types, but whether these patterns are sufficient to characterize the full breadth of tumor phenotype heterogeneity remains an open question. We hypothesized that cancer transcriptional diversity mirrors patterns in normal tissues optimized for distinct functional tasks. Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal tissue patterns and variations across a broad spectrum of malignancies. We show that differential enrichment of these signatures correlates with key tumor characteristics, including overall patient survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we show that in HR+/HER2-breast cancers, metastatic tumors adopt transcriptomic signatures consistent with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue transcriptomic characteristics as a component of both malignant progression and drug response. This quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and could potentially help manage individual patients.
RESUMO
Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFKB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.
RESUMO
Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, we analyze the time evolution of p21 and p53 from two single cell datasets of retinal pigment epithelial cells exposed to several levels of radiation, and in particular, the effect of radiation on cell cycle arrest. Employing various quantification methods from signal processing, we show how p21 levels, and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how frequently these mitosis events are likely to occur. We observed that single cells exposed to the same dose of DNA damage exhibit heterogeneity in cellular outcomes and that the frequency of cell division is a more accurate monitor of cell damage rather than just radiation level. Finally, we show how heterogeneity in DNA damage signaling is manifested early in the response to radiation exposure level and has potential to predict long-term fate.
Assuntos
Mitose , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Dano ao DNARESUMO
BACKGROUND: Compositional systems, represented as parts of some whole, are ubiquitous. They encompass the abundances of proteins in a cell, the distribution of organisms in nature, and the stoichiometry of the most basic chemical reactions. Thus, a central goal is to understand how such processes emerge from the behaviors of their components and their pairwise interactions. Such a study, however, is challenging for two key reasons. Firstly, such systems are complex and depend, often stochastically, on their constituent parts. Secondly, the data lie on a simplex which influences their correlations. RESULTS: To resolve both of these issues, we provide a general and data-driven modeling tool for compositional systems called Compositional Maximum Entropy (CME). By integrating the prior geometric structure of compositions with sample-specific information, CME infers the underlying multivariate relationships between the constituent components. We provide two proofs of principle. First, we measure the relative abundances of different bacteria and infer how they interact. Second, we show that our method outperforms a common alternative for the extraction of gene-gene interactions in triple-negative breast cancer. CONCLUSIONS: CME provides novel and biologically-intuitive insights and is promising as a comprehensive quantitative framework for compositional data.
Assuntos
Bactérias , Proteínas , Entropia , Proteínas/químicaRESUMO
In this paper, we present a network-based clustering method, called vector Wasserstein clustering (vWCluster), based on the vector-valued Wasserstein distance derived from optimal mass transport (OMT) theory. This approach allows for the natural integration of multi-layer representations of data in a given network from which one derives clusters via a hierarchical clustering approach. In this study, we applied the methodology to multi-omics data from the two largest breast cancer studies. The resultant clusters showed significantly different survival rates in Kaplan-Meier analysis in both datasets. CIBERSORT scores were compared among the identified clusters. Out of the 22 CIBERSORT immune cell types, 9 were commonly significantly different in both datasets, suggesting the difference of tumor immune microenvironment in the clusters. vWCluster can aggregate multi-omics data represented as a vectorial form in a network with multiple layers, taking into account the concordant effect of heterogeneous data, and further identify subgroups of tumors in terms of mortality.
Assuntos
Neoplasias da Mama , Neoplasias da Mama/metabolismo , Análise por Conglomerados , Feminino , Humanos , Microambiente TumoralRESUMO
The development of reliable predictive models for individual cancer cell lines to identify an optimal cancer drug is a crucial step to accelerate personalized medicine, but vast differences in cancer cell lines and drug characteristics make it quite challenging to develop predictive models that result in high predictive power and explain the similarity of cell lines or drugs. Our study proposes a novel network-based methodology that breaks the problem into smaller, more interpretable problems to improve the predictive power of anti-cancer drug responses in cell lines. For the drug-sensitivity study, we used the GDSC database for 915 cell lines and 200 drugs. The theory of optimal mass transport was first used to separately cluster cell lines and drugs, using gene-expression profiles and extensive cheminformatic drug features, represented in a form of data networks. To predict cell-line specific drug responses, random forest regression modeling was separately performed for each cell-line drug cluster pair. Post-modeling biological analysis was further performed to identify potential biological correlates associated with drug responses. The network-based clustering method resulted in 30 distinct cell-line drug cluster pairs. Predictive modeling on each cell-line-drug cluster outperformed alternative computational methods in predicting drug responses. We found that among the four drugs top-ranked with respect to prediction performance, three targeted the PI3K/mTOR signaling pathway. Predictive modeling on clustered subsets of cell lines and drugs improved the prediction accuracy of cell-line specific drug responses. Post-modeling analysis identified plausible biological processes associated with drug responses.
Assuntos
Antineoplásicos/farmacologia , Quimioinformática/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Análise de Regressão , Transdução de Sinais , Serina-Treonina Quinases TOR/genéticaRESUMO
The remarkable growth of multi-platform genomic profiles has led to the challenge of multiomics data integration. In this study, we present a novel network-based multiomics clustering founded on the Wasserstein distance from optimal mass transport. This distance has many important geometric properties making it a suitable choice for application in machine learning and clustering. Our proposed method of aggregating multiomics and Wasserstein distance clustering (aWCluster) is applied to breast carcinoma as well as bladder carcinoma, colorectal adenocarcinoma, renal carcinoma, lung non-small cell adenocarcinoma, and endometrial carcinoma from The Cancer Genome Atlas project. Subtypes were characterized by the concordant effect of mRNA expression, DNA copy number alteration, and DNA methylation of genes and their neighbors in the interaction network. aWCluster successfully clusters all cancer types into classes with significantly different survival rates. Also, a gene ontology enrichment analysis of significant genes in the low survival subgroup of breast cancer leads to the well-known phenomenon of tumor hypoxia and the transcription factor ETS1 whose expression is induced by hypoxia. We believe aWCluster has the potential to discover novel subtypes and biomarkers by accentuating the genes that have concordant multiomics measurements in their interaction network, which are challenging to find without the network inference or with single omics analysis.
Assuntos
Neoplasias da Mama , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias da Mama/genética , Carcinoma de Células Renais/genética , Análise por Conglomerados , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Renais/genéticaRESUMO
Network analysis methods can potentially quantify cancer aberrations in gene networks without introducing fitted parameters or variable selection. A new network curvature-based method is introduced to provide an integrated measure of variability within cancer gene networks. The method is applied to high-grade serous ovarian cancers (HGSOCs) to predict response to immune checkpoint inhibitors (ICIs) and to rank key genes associated with prognosis. Copy number alterations (CNAs) from targeted and whole-exome sequencing data were extracted for HGSOC patients (n = 45) treated with ICIs. CNAs at a gene level were represented on a protein-protein interaction network to define patient-specific networks with a fixed topology. A version of Ollivier-Ricci curvature was used to identify genes that play a potentially key role in response to immunotherapy and further to stratify patients at high risk of mortality. Overall survival (OS) was defined as the time from the start of ICI treatment to either death or last follow-up. Kaplan-Meier analysis with log-rank test was performed to assess OS between the high and low curvature classified groups. The network curvature analysis stratified patients at high risk of mortality with p = 0.00047 in Kaplan-Meier analysis in HGSOC patients receiving ICI. Genes with high curvature were in accordance with CNAs relevant to ovarian cancer. Network curvature using CNAs has the potential to be a novel predictor for OS in HGSOC patients treated with immunotherapy.
RESUMO
We present a technique to construct a simplification of a feature network which can be used for interactive data exploration, biological hypothesis generation, and the detection of communities or modules of cofunctional features. These are modules of features that are not necessarily correlated, but nevertheless exhibit common function in their network context as measured by similarity of relationships with neighboring features. In the case of genetic networks, traditional pathway analyses tend to assume that, ideally, all genes in a module exhibit very similar function, independent of relationships with other genes. The proposed technique explicitly relaxes this assumption by employing the comparison of relational profiles. For example, two genes which always activate a third gene are grouped together even if they never do so concurrently. They have common, but not identical, function. The comparison is driven by an average of a certain computationally efficient comparison metric between Gaussian mixture models. The method has its basis in the local connection structure of the network and the collection of joint distributions of the data associated with nodal neighborhoods. It is benchmarked on networks with known community structures. As the main application, we analyzed the gene regulatory network in lung adenocarcinoma, finding a cofunctional module of genes including the pregnancy-specific glycoproteins (PSGs). About 20% of patients with lung, breast, uterus, and colon cancer in The Cancer Genome Atlas (TCGA) have an elevated PSG+ signature, with associated poor group prognosis. In conjunction with previous results relating PSGs to tolerance in the immune system, these findings implicate the PSGs in a potential immune tolerance mechanism of cancers.
Assuntos
Biologia Computacional/métodos , Tolerância Imunológica/genética , Neoplasias/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Estatísticos , Neoplasias/imunologia , Glicoproteínas beta 1 Específicas da Gravidez/genética , PrognósticoRESUMO
In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/metabolismoRESUMO
This paper details an algorithm to simultaneously perform registration of computed tomography (CT) and cone-beam computed (CBCT) images, and image enhancement of CBCT. The algorithm employs a viscous fluid model which naturally incorporates two components: a similarity measure for registration and an intensity correction term for image enhancement. Incorporating an intensity correction term improves the registration results. Furthermore, applying the image enhancement term to CBCT imagery leads to an intensity corrected CBCT with better image quality. To achieve minimal processing time, the algorithm is implemented on a graphic processing unit (GPU) platform. The advantage of the simultaneous optimization strategy is quantitatively validated and discussed using a synthetic example. The effectiveness of the proposed algorithm is then illustrated using six patient datasets, three head-and-neck datasets and three prostate datasets.
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Técnica de Subtração , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The metabolism and composition of lipids is of increasing interest for understanding and detecting disease processes. Lipid signatures of tumor type and grade have been demonstrated using magnetic resonance spectroscopy. Clinical management and ultimate prognosis of brain tumors depend largely on the tumor type, subtype, and grade. Mass spectrometry, a well-known analytical technique used to identify molecules in a given sample based on their mass, can significantly improve the problem of tumor type classification. This work focuses on the problem of identifying lipid features to use as input for classification. Feature selection could result in improvements in classifier performance, discovery of biomarkers, improved data interpretation, and patient treatment.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Diagnóstico por Computador/métodos , Glioma/diagnóstico , Glioma/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Algoritmos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Surgery, and specifically, tumor resection, is the primary treatment for most patients suffering from brain tumors. Medical imaging techniques, and in particular, magnetic resonance imaging are currently used in diagnosis as well as image-guided surgery procedures. However, studies show that computed tomography and magnetic resonance imaging fail to accurately identify the full extent of malignant brain tumors and their microscopic infiltration. Mass spectrometry is a well-known analytical technique used to identify molecules in a given sample based on their mass. In a recent study, it is proposed to use mass spectrometry as an intraoperative tool for discriminating tumor and non-tumor tissue. Integration of mass spectrometry with the resection module allows for tumor resection and immediate molecular analysis. In this paper, we propose a framework for tumor margin delineation using compressive sensing. Specifically, we show that the spatial distribution of tumor cell concentration can be efficiently reconstructed and updated using mass spectrometry information from the resected tissue. In addition, our proposed framework is model-free, and hence, requires no prior information of spatial distribution of the tumor cell concentration.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico , Diagnóstico por Computador/métodos , Glioma/química , Glioma/diagnóstico , Espectrometria de Massas/métodos , Compressão de Dados/métodos , Feminino , Humanos , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Glioma histologies are the primary factor in prognostic estimates and are used in determining the proper course of treatment. Furthermore, due to the sensitivity of cranial environments, real-time tumor-cell classification and boundary detection can aid in the precision and completeness of tumor resection. A recent improvement to mass spectrometry known as desorption electrospray ionization operates in an ambient environment without the application of a preparation compound. This allows for a real-time acquisition of mass spectra during surgeries and other live operations. In this paper, we present a framework using sparse kernel machines to determine a glioma sample's histopathological subtype by analyzing its chemical composition acquired by desorption electrospray ionization mass spectrometry.