Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virulence ; 9(1): 1273-1286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30027796

RESUMO

The ubiquitous fungus Aspergillus flavus is notorious for contaminating many important crops and food-stuffs with the carcinogenic mycotoxin, aflatoxin. This fungus is also the second most frequent Aspergillus pathogen after A. fumigatus infecting immunosuppressed patients. In many human fungal pathogens including A. fumigatus, the ability to defend from toxic levels of copper (Cu) is essential in pathogenesis. In A. fumigatus, the Cu-fist DNA binding protein, AceA, and the Cu ATPase transporter, CrpA, play critical roles in Cu defense. Here, we show that A. flavus tolerates higher concentrations of Cu than A. fumigatus and other Aspergillus spp. associated with the presence of two homologs of A. fumigatus CrpA termed CrpA and CrpB. Both crpA and crpB are transcriptionally induced by increasing Cu concentrations via AceA activity. Deletion of crpA or crpB alone did not alter high Cu tolerance, suggesting they are redundant. Deletion of both genes resulted in extreme Cu sensitivity that was greater than that following deletion of the regulatory transcription factor aceA. The ΔcrpAΔcrpB and ΔaceA strains were also sensitive to ROI stress. Compared to wild type, these mutants were impaired in the ability to colonize maize seed treated with Cu fungicide but showed no difference in virulence on non-treated seed. A mouse model of invasive aspergillosis showed ΔcrpAΔcrpB and to a lesser degree ΔaceA to be significantly reduced in virulence, following the greater sensitivity of ΔcrpAΔcrpB to Cu than ΔaceA.


Assuntos
Aspergillus flavus/patogenicidade , ATPases Transportadoras de Cobre/metabolismo , Cobre/farmacologia , Proteínas Fúngicas/genética , Zea mays/microbiologia , Animais , Aspergilose/enzimologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , ATPases Transportadoras de Cobre/genética , Feminino , Deleção de Genes , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Fatores de Transcrição/genética , Virulência , Zea mays/enzimologia
2.
Arch Toxicol ; 91(6): 2455-2467, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27913847

RESUMO

Patulin is the main mycotoxin contaminating apples. During the brewing of alcoholic beverages, this mycotoxin is degraded to ascladiol, which is also the last precursor of patulin. The present study aims (1) to characterize the last step of the patulin biosynthetic pathway and (2) to describe the toxicity of ascladiol. A patE deletion mutant was generated in Penicillium expansum. In contrast to the wild strain, this mutant does not produce patulin but accumulates high levels of E-ascladiol with few traces of Z-ascladiol. This confirms that patE encodes the patulin synthase involved in the conversion of E-ascladiol to patulin. After purification, cytotoxicities of patulin and E- and Z-ascladiol were investigated on human cell lines from liver, kidney, intestine, and immune system. Patulin was cytotoxic for these four cell lines in a dose-dependent manner. By contrast, both E- and Z-ascladiol were devoid of cytotoxicity. Microarray analyses on human intestinal cells treated with patulin and E-ascladiol showed that the latter, unlike patulin, did not alter the whole human transcription. These results demonstrate that E- and Z-ascladiol are not toxic and therefore patulin detoxification strategies leading to the accumulation of ascladiol are good approaches to limit the patulin risk.


Assuntos
Furanos/toxicidade , Patulina/biossíntese , Patulina/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Furanos/metabolismo , Deleção de Genes , Genes Fúngicos , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Isomerismo , Especificidade de Órgãos , Penicillium/genética , Penicillium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA