Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 11: e14861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785706

RESUMO

Background: Microplastics (MPs) are pollutants in rivers and marine environments. Rivers can be sources and sinks of MPs that enter the biota. Previous studies focusing on freshwater species are quite limited, especially for gastropods. Freshwater gastropods are essential to aquatic ecosystems because they are food to other aquatic animals, such as fish, shrimp, and crabs. They are a crucial link in the food chain between water resources and human food. Therefore, this study aimed to investigate MP accumulation in freshwater gastropods, commonly known as snails (Filopaludina sumatrensis speciosa and Pomacea canaliculata), in a river flowing into a shallow coastal lagoon. Method: In this study, snail tissue samples were digested with 30% hydrogen peroxide. The mixture was heated at 60 °C for 24 h. MP particles were identified, counted, and characterized (shape, size, and color) by visual identification under a stereomicroscope. Furthermore, polymer-type identification was performed using Fourier transform infrared spectroscopy (FTIR). Analysis of variance (ANOVA) was applied for the statistical analysis. Results: The MPs found were as follows: 4.76 particles/individual were found in F. sumatrensis speciosa upstream, 5.20 particles/individual were found in F. sumatrensis speciosa downstream, 7.28 particles/individual were found in P. canaliculata upstream, and 4.00 particles/individual were found in P. canaliculata downstream. It was found in the two-way ANOVA that the accumulation of MPs in gastropods was affected by species and study sites (upstream and downstream). There was a significant difference in the amount of MPs in P. canaliculata between upstream and downstream sites (p = 0.003). Fibers were the most common MPs in both species. Moreover, P. canaliculata upstream had the most significant amount of MPs. The smallest amount of MPs was recorded for P. canaliculata downstream, but there was great diversity in shape, size, and polymer type. MPs sized 500 µm-1 mm were the most common in both species. Fourier transform infrared spectroscopy revealed six polymers: poly (ethylene terephthalate), polypropylene, rayon, polyethyleneimine, polyamine, and poly (propylene: ethylene). The occurrence of MPs in gastropods is alarming for food security in Thailand. The results of this study can be used to support baseline data on MP accumulation among freshwater gastropods.


Assuntos
Gastrópodes , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/análise , Plásticos/análise , Ecossistema , Tailândia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Água Doce
2.
Heliyon ; 7(9): e07823, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34611555

RESUMO

AIMS: Curcuminoid (CRE-Ter) is the active component of turmeric, and is widely understood to offer anticancer, antioxidant, and anti-inflammatory properties. The drawbacks, however, include rapid metabolism and systemic elimination as well as minimal bioavailability. In an attempt to address the issue of bioavailability, this study seeks to encapsulate CRE-Ter in a liposome before its incorporation on PLA foams in order to inhibit the process of osteoclastogenesis which takes place in RANKL-induced RAW 264.7 cells. MAIN METHODS: Having encapsulated the CRE-Ter into the liposomes, the influence of the release of liposomal CRE-Ter from PLA foams in order to inhibit the process of osteoclastogenesis in the case of RANKL-induced RAW 264.7 cells was investigated. By measuring the decline in tartrate-resistant acid phosphatase (TRAP) content it was possible to evaluate the influence of CRE-Ter/Liposome upon osteoclastogenesis in vitro. Immunocytochemistry was employed to assess the marker for the monocyte/macrophage cells F4/80 content, while Western blots were used to evaluate the underlying mechanisms involved. KEY FINDINGS: The findings demonstrate a novel method which employs tissue engineering scaffolds, which are produced to work alongside advanced additive manufacturing techniques with their basis in concepts from the field of alternative medicine. Initially, it was confirmed that CRE-Ter/Liposome at 20 µg/ml is able to inhibit the creation of multinucleated osteoclasts which are induced by the receptor activator of the nuclear factor-κB ligand (RANKL) in RAW 264.7 cells. It was shown that the CRE-Ter/liposome was able to increase the F4/80 content (F4/80 immunohistochemistry) in the RANKL treated RAW 264.7 cells. The TRAP content was lowered by the CRE-Ter/liposome along with the osteoclast-specific gene content such as cathepsin K, via the use of liposome-encapsulated PLA foams. When treated with CRE-Ter/liposome, RANKL-induced NF-κB and ERK components such as NF-κB-p65, ERK, phospho-NF-κB-p65, and phospho-ERK pathways were all suppressed. SIGNIFICANCE: The successful encapsulation of CRE-Ter into the liposomes offered a new opportunity to provide a new inhibitor of osteoclastogenesis and offers the possibility of developing treatments capable of addressing diseases which concern abnormal bone lysis.

3.
Materials (Basel) ; 14(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924997

RESUMO

This paper explored the effects of ammonium bicarbonate and different ratios of epoxy to polyamide on the formation of porous epoxy micro-beads through a single epoxy droplet. A single drop of a mixture, consisting of epoxy, polyamide, and ammonium bicarbonate, was dropped into heated corn oil at a temperature of 100 °C. An epoxy droplet was formed due to the immiscibility of the epoxy mixture and corn oil. The ammonium bicarbonate within this droplet underwent a decomposition reaction, while the epoxy and polyamide underwent a curing reaction, to form porous epoxy micro-beads. The result showed that the higher ammonium bicarbonate content in the porous, epoxy micro-beads increased the decomposition rate up to 11.52 × 10-3 cm3/s. In addition, a higher total volume of gas was generated when a higher ammonium bicarbonate content was decomposed. This led to the formation of porous epoxy micro-beads with a smaller particle size, lower specific gravity, and better thermal stability. At an epoxy to polyamide ratio of 10:6, many smaller micro-beads, with particle sizes ranging from 201 to 400 µm, were obtained at an ammonium bicarbonate content of 10 phr. Moreover, the porous epoxy micro-beads with open pores were shown to have a low specific gravity of about 0.93 and high thermal stability at a high ammonium bicarbonate content. Based on the findings, it was concluded that porous epoxy micro-beads were successfully produced using a single epoxy droplet in heated corn oil, where their shape and particle size depended on the content of ammonium bicarbonate and the ratio of epoxy to polyamide used.

4.
Electron. j. biotechnol ; 15(1): 8-8, Jan. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640534

RESUMO

Background: The growing problem of environmental pollution caused by synthetic plastics has led to the search for alternative materials such as biodegradable plastics. Of the biopolymers presently under development, starch/natural rubber is one promising alternative. Several species of bacteria and fungi are capable of degrading natural rubber and many can degrade starch. Results: Streptomyces coelicolor CH13 was isolated from soil according to its ability to produce translucent halos on a mineral salts medium, MSM, supplemented with natural rubber and to degrade starch. Scanning electron microscope studies showed that it colonized the surfaces of strips of a new starch/natural rubber biopolymer and rubber gloves and caused degradation by forming holes, and surface degradation. Starch was completely removed and polyisoprene chains were broken down to produce aldehyde and/or carbonyl groups. After 6 weeks of cultivation with strips of the polymers in MSM, S. coelicolor CH13 reduced the weight of the starch/NR biopolymer by 92 percent and that of the rubber gloves by 14.3 percent. Conclusions: This study indicated that this bacterium causes the biodegradation of the new biopolymer and natural rubber and confirms that this new biopolymer can be degraded in the environment and would be suitable as a ‘green plastic’ derived from natural sources.


Assuntos
Amido/metabolismo , Biopolímeros/metabolismo , Borracha/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/química , Biodegradação Ambiental , Biopolímeros/química , Borracha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA