Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Diabetes ; 73(2): 211-224, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963392

RESUMO

In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Adipócitos/metabolismo , Obesidade/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Am J Pathol ; 192(6): 926-942, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358473

RESUMO

White adipose tissue accumulates at various sites throughout the body, some adipose tissue depots exist near organs whose function they influence in a paracrine manner. Prostate gland is surrounded by a poorly characterized adipose depot called periprostatic adipose tissue (PPAT), which plays emerging roles in prostate-related disorders. Unlike all other adipose depots, PPAT secretes proinflammatory cytokines even in lean individuals and does not increase in volume during obesity. These unique features remain unexplained because of the poor structural and functional characterization of this tissue. This study characterized the structural organization of PPAT in patients compared with abdominopelvic adipose tissue (APAT), an extraperitoneal adipose depot, the accumulation of which is correlated to body mass index. Confocal microscopy followed by three-dimensional reconstructions showed a sparse vascular network in PPAT when compared with that in APAT, suggesting that this tissue is hypoxic. Unbiased comparisons of PPAT and APAT transcriptomes found that most differentially expressed genes were related to the hypoxia response. High levels of the hypoxia-inducible factor 2α confirmed the presence of an adaptive response to hypoxia in PPAT. This chronic hypoxic state was associated with inflammation and fibrosis, which were not further up-regulated by obesity. This fibrosis and inflammation explain the failure of PPAT to expand in obesity and open new mechanistic avenues to explain its role in prostate-related disorders, including cancer.


Assuntos
Tecido Adiposo , Obesidade , Tecido Adiposo/patologia , Fibrose , Humanos , Hipóxia/patologia , Inflamação/patologia , Masculino , Obesidade/complicações
3.
Clin Genitourin Cancer ; 19(6): 501-509, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34629300

RESUMO

BACKGROUND: Docetaxel (DOCE) is a standard of care in metastatic castration-resistant prostate cancer (mCRPC). Several retrospective studies suggested a decrease in Prostate Cancer incidence and mortality with metformin (MET). MET has also demonstrated anti-tumor activity in Prostate Cancer preclinical models, with increased apoptosis when added to DOCE. We aimed at exploring the role of MET in combination with DOCE in mCRPC. PATIENTS AND METHODS: Non-diabetic mCRPC patients were randomly assigned to receive DOCE 75 mg/m2 every 21 days + prednisone (5 mg. BID) with either MET 850 mg BID (D+M) or placebo (D+P) up to 10 cycles. Prostate-Specific Antigen (PSA) response ≥50% from baseline was the primary end point. Secondary end points included objective response rate (ORR), progression-free survival (PFS), overall survival (OS), toxicity and quality of life (QoL). RESULTS: Out of 99 patients were randomized (D+M = 50; D+P = 49) in 10 French centers. The median follow-up was 86 (IQR 73-88) months. The PSA-response rate reached 66% in the D+M arm, but was not different from that observed in the D+P arm (63%, P = 0,94). In the D+M and D+P arms, the ORR was 28% and 24%, the median PFS was 7.8 and 6.0 months and the median OS was 27 and 20 months (ns), respectively. Diarrhea grade I to II was more frequent in the MET arm (66% vs. 43%). No impairment of QoL was observed. CONCLUSION: MET addition failed to improve the standard DOCE regimen in mCRPC. Further research targeting tumor cell metabolism should be performed.


Assuntos
Metformina , Neoplasias de Próstata Resistentes à Castração , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Intervalo Livre de Doença , Docetaxel/uso terapêutico , Humanos , Masculino , Metformina/uso terapêutico , Prednisona/uso terapêutico , Estudos Prospectivos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
4.
J Ethnopharmacol ; 270: 113772, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33418030

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Citrullus colocynthis (L.) Schrad is a common fruit in traditional medicine and used as remedy against various diseases, especially diabetes. Up to now, its anti-diabetic effects have been fully attributed to its enhancement of pancreatic insulin secretion. Whether C. colocynthis also ameliorates insulin action in peripheral tissues has not been investigated. AIM OF THE STUDY: In the present study, using 3T3-L1 adipocytes as cell model, we have investigated whether colocynth fruit extracts affect insulin action. MATERIALS AND METHODS: Various extracts were prepared from the C. colocynthis fruit and screened using a cell-based 96 well plate GLUT4 translocation assay. Promising extracts were further studied for their effects on glucose uptake and cell viability. The effect on insulin signal transduction was determined by Western blot and the molecular composition was established by LC-MS. RESULTS: The ethyl acetate fractions of aqueous non-defatted extracts of seed and pulp, designated Sna1 and Pna1, acutely enhanced insulin-induced GLUT4 translocation. In accordance, both extracts increased insulin-stimulated cellular glucose uptake. Pna1, which displayed greater effects on GLUT4 and glucose uptake than Sna1, was further investigated and was demonstrated to increase GLUT4 translocation without changing the half-maximum dose (ED50) of insulin, nor changing GLUT4 translocation kinetics. At the molecular level, Pna1 was found to enhance insulin-induced PKB phosphorylation without changing phosphorylation of the insulin receptor. Pna1 appeared not to be toxic to cells and, like insulin, restored cell viability during serum starvation. By investigating the molecular composition of Pna1, nine compounds were identified that made up 87% of the mass of the extract, one of which is likely to be responsible for the insulin-enhancing effects of Pna1. CONCLUSIONS: The C. colocynthis fruit possesses insulin-enhancing activity. This activity may explain in part its anti-diabetic effects in traditional medicine. It also identifies the C. colocynthis as a source of a potential novel insulin enhancer that may prove to be useful to reduce hyperglycemia in type 2 diabetes.


Assuntos
Citrullus colocynthis/química , Frutas/química , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/química , Insulina/metabolismo , Resistência à Insulina , Medicina Tradicional , Camundongos , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Transporte Proteico
5.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011604

RESUMO

Low-grade chronic inflammation and reduced differentiation capacity are hallmarks of hypertrophic adipose tissue (AT) and key contributors of insulin resistance. We identified PPARGΔ5 as a dominant-negative splicing isoform overexpressed in the AT of obese/diabetic patients able to impair adipocyte differentiation and PPARγ activity in hypertrophic adipocytes. Herein, we investigate the impact of macrophage-secreted pro-inflammatory factors on PPARG splicing, focusing on PPARGΔ5. We report that the epididymal AT of LPS-treated mice displays increased PpargΔ5/cPparg ratio and reduced expression of Pparg-regulated genes. Interestingly, pro-inflammatory factors secreted from murine and human pro-inflammatory macrophages enhance the PPARGΔ5/cPPARG ratio in exposed adipogenic precursors. TNFα is identified herein as factor able to alter PPARG splicing-increasing PPARGΔ5/cPPARG ratio-through PI3K/Akt signaling and SRp40 splicing factor. In line with in vitro data, TNFA expression is higher in the SAT of obese (vs. lean) patients and positively correlates with PPARGΔ5 levels. In conclusion, our results indicate that inflammatory factors secreted by metabolically-activated macrophages are potent stimuli that modulate the expression and splicing of PPARG. The resulting imbalance between canonical and dominant negative isoforms may crucially contribute to impair PPARγ activity in hypertrophic AT, exacerbating the defective adipogenic capacity of precursor cells.


Assuntos
Tecido Adiposo/patologia , Inflamação/genética , Células-Tronco Mesenquimais/patologia , PPAR gama/genética , Splicing de RNA/genética , Fator de Necrose Tumoral alfa/efeitos adversos , Células 3T3-L1 , Animais , Humanos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , Células THP-1
6.
Cancer Res ; 79(13): 3268-3280, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064849

RESUMO

Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation of the polyamine biosynthesis pathway. Mechanistically, PGC1α inhibits the expression of c-MYC and ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme for polyamine synthesis. Analysis of in vivo metastases and clinical data from patients with prostate cancer support the proposition that the PGC1α/c-MYC/ODC1 axis regulates polyamine biosynthesis and prostate cancer aggressiveness. In conclusion, downregulation of PGC1α renders prostate cancer cells dependent on polyamine to promote metastasis. SIGNIFICANCE: These findings show that a major regulator of mitochondrial metabolism controls polyamine synthesis and prostate cancer aggressiveness, with potential applications in therapy and identification of new biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Poliaminas/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Transportadores de Ácidos Dicarboxílicos/genética , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Metástase Neoplásica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Metab ; 29(2): 320-334.e5, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30393019

RESUMO

Dipeptidyl peptidase-4 (DPP-4) controls glucose homeostasis through enzymatic termination of incretin action. We report that plasma DPP-4 activity correlates with body weight and fat mass, but not glucose control, in mice. Genetic disruption of adipocyte Dpp4 expression reduced plasma DPP-4 activity in older mice but did not perturb incretin levels or glucose homeostasis. Knockdown of hepatocyte Dpp4 completely abrogated the obesity-associated increase in plasma DPP-4 activity, reduced liver cytokine expression, and partially attenuated inflammation in adipose tissue without changes in incretin levels or glucose homeostasis. In contrast, circulating levels of soluble DPP4 (sDPP4) were dissociated from inflammation in mice with endothelial-selective or global genetic inactivation of Dpp4. Remarkably, inhibition of DPP-4 enzymatic activity upregulated circulating levels of sDPP4 originating from endothelial or hematopoietic cells without inducing systemic or localized inflammation. Collectively, these findings reveal unexpected complexity in regulation of soluble versus enzymatic DPP-4 and control of inflammation and glucose homeostasis.


Assuntos
Dipeptidil Peptidase 4/fisiologia , Glucose/metabolismo , Hepatócitos/metabolismo , Incretinas/metabolismo , Inflamação/imunologia , Obesidade/metabolismo , Células 3T3-L1 , Animais , Citocinas/metabolismo , Hepatócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Oncotarget ; 8(44): 77309-77316, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100388

RESUMO

Predictive biomarkers for advanced prostate cancer (PCa) are still missing. The sirtuin 7 (SIRT7) has been linked to tumorogenesis but its role in prostate cancer is poorly documented. To determine if SIRT7 can be a biomarker for aggressive prostate cancer and plays a role in PCa aggressiveness. We analyzed the expression of SIRT7 by immunohistochemistry in 57 patients comparing healthy with adjacent cancer tissue. SIRT7 levels were significantly elevated in tumors and its expression was positively associated with the grade. We also demonstrated that the knock down of SIRT7 decreased the migration of DU145 and PC3 cells (two androgen-independent prostate cancer cell lines) whereas the overexpression of the native protein but not the mutated form increased the cell migration and the invasion of the poorly aggressive prostate cancer cell line LNCaP. Finally, we also showed that SIRT7 overexpression induced the resistance to docetaxel. Our results demonstrate that SIRT7 promotes prostate cancer cell aggressiveness and chemoresistance and suggest that SIRT7 is a good predictive biomarker of PCa aggressiveness.

9.
Sci Rep ; 7(1): 7023, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765650

RESUMO

In response to endotoxemia, the organism triggers an inflammatory response, and the visceral adipose tissue represents a major source of proinflammatory cytokines. The regulation of inflammation response in the adipose tissue is thus of crucial importance. We demonstrated that Regulated in development and DNA damage response-1 (REDD1) is involved in inflammation. REDD1 expression was increased in response to lipopolysaccharide (LPS) in bone marrow derived macrophages (BMDM) and in epidydimal adipose tissue. Loss of REDD1 protected the development of inflammation, since the expression of proinflammatory cytokines (TNFα, IL-6, IL-1ß) was decreased in adipose tissue of REDD1-/- mice injected with LPS compared to wild-type mice. This decrease was associated with an inhibition of the activation of p38MAPK, JNK, NF-κB and NLRP3 inflammasome leading to a reduction of IL-1ß secretion in response to LPS and ATP in REDD1-/- BMDM. Although REDD1 is an inhibitor of mTORC1, loss of REDD1 decreased inflammation independently of mTORC1 activation but more likely through oxidative stress regulation. Absence of REDD1 decreases ROS associated with a dysregulation of Nox-1 and GPx3 expression. Absence of REDD1 in macrophages decreases the development of insulin resistance in adipocyte-macrophage coculture. Altogether, REDD1 appears to be a key player in the control of inflammation.


Assuntos
Endotoxinas/toxicidade , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Fatores de Transcrição/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Epididimo/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/deficiência
10.
Sci Rep ; 7(1): 5040, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698627

RESUMO

Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling. Metformin triggers the disorganization of the cristae and inner mitochondrial membrane in several cancer cells and tumors. Mechanistically, these alterations were found to be due to calcium entry into the mitochondria, because the swelling induced by metformin was reversed by the inhibition of mitochondrial calcium uniporter (MCU). We also demonstrated that metformin inhibits the opening of mPTP and induces mitochondrial biogenesis. Altogether, the inhibition of mPTP and the increase in mitochondrial biogenesis may account for the poor pro-apoptotic effect of metformin in cancer cells.


Assuntos
Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metformina/farmacologia , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Biogênese de Organelas
11.
Diabetes ; 65(10): 3062-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388216

RESUMO

Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance.


Assuntos
Adipócitos/metabolismo , Dano ao DNA/genética , Proteína Supressora de Tumor p53/metabolismo , Células 3T3-L1 , Animais , Western Blotting , Quimiotaxia/genética , Quimiotaxia/fisiologia , Dano ao DNA/fisiologia , Citometria de Fluxo , Imunofluorescência , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Telômero/genética , Proteína Supressora de Tumor p53/genética
12.
Cell Rep ; 13(1): 132-144, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411684

RESUMO

Enhanced glucose utilization can be visualized in atherosclerotic lesions and may reflect a high glycolytic rate in lesional macrophages, but its causative role in plaque progression remains unclear. We observe that the activity of the carbohydrate-responsive element binding protein ChREBP is rapidly downregulated upon TLR4 activation in macrophages. ChREBP inactivation refocuses cellular metabolism to a high redox state favoring enhanced inflammatory responses after TLR4 activation and increased cell death after TLR4 activation or oxidized LDL loading. Targeted deletion of ChREBP in bone marrow cells resulted in accelerated atherosclerosis progression in Ldlr(-/-) mice with increased monocytosis, lesional macrophage accumulation, and plaque necrosis. Thus, ChREBP-dependent macrophage metabolic reprogramming hinders plaque progression and establishes a causative role for leukocyte glucose metabolism in atherosclerosis.


Assuntos
Aterosclerose/imunologia , Macrófagos/imunologia , Proteínas Nucleares/imunologia , Placa Aterosclerótica/imunologia , Receptores de LDL/imunologia , Fatores de Transcrição/imunologia , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Humanos , Inflamação , Lipoproteínas LDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Cultura Primária de Células , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Oncotarget ; 6(17): 15652-61, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26002551

RESUMO

The deregulation of lipid metabolism is a hallmark of tumor cells, and elevated lipogenesis has been reported in prostate cancer. Metformin, a drug commonly prescribed for type II diabetes, displays antitumor properties. Here, we show that metformin inhibits lipogenesis in several prostate cancer cell lines. In LNCaP cells, this effect parallels the decrease of key lipogenic proteins: ACC (acetyl-CoA carboxylase), FASN (fatty acid synthase) and SREBP1c (sterol regulatory element binding protein-1c), whereas there is no modification in DU145 and PC3 cells. Despite the relatively high level of lipogenic proteins induced by the overexpression of a constitutively active form of SREBP1c or treatment with androgens, metformin is still able to inhibit lipogenesis. Metformin does not alter the concentration of malonyl-CoA (the fatty acid precursor), and it only slightly decreases the NADPH levels, which is a co-factor required for lipogenesis, in LNCaP. Finally, we show that the inhibitory effect of metformin on lipogenesis is primarily due to a cellular energy deficit. Metformin decreases ATP in a dose-dependent manner, and this diminution is significantly correlated with the inhibition of lipogenesis in LNCaP and DU145. Indeed, the effect of metformin is linked to changes in the ATP content rather than the regulation of protein expression. Our results describe a new mechanism of action for metformin on prostate cancer metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Lipogênese/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/metabolismo , Acetil-CoA Carboxilase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Masculino , Malonil Coenzima A/metabolismo , NADP/metabolismo , Próstata/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
14.
Mol Endocrinol ; 29(7): 1025-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26020725

RESUMO

Bioactive lipid mediators such as prostaglandin E2 (PGE2) have emerged as potent regulator of obese adipocyte inflammation and functions. PGE2 is produced by cyclooxygenases (COXs) from arachidonic acid, but inflammatory signaling pathways controlling COX-2 expression and PGE2 production in adipocytes remain ill-defined. Here, we demonstrated that the MAP kinase kinase kinase tumor progression locus 2 (Tpl2) controls COX-2 expression and PGE2 secretion in adipocytes in response to different inflammatory mediators. We found that pharmacological- or small interfering RNA-mediated Tpl2 inhibition in 3T3-L1 adipocytes decreased by 50% COX-2 induction in response to IL-1ß, TNF-α, or a mix of the 2 cytokines. PGE2 secretion induced by the cytokine mix was also markedly blunted. At the molecular level, nuclear factor κB was required for Tpl2-induced COX-2 expression in response to IL-1ß but was inhibitory for the TNF-α or cytokine mix response. In a coculture between adipocytes and macrophages, COX-2 was mainly increased in adipocytes and pharmacological inhibition of Tpl2 or its silencing in adipocytes markedly reduced COX-2 expression and PGE2 secretion. Further, Tpl2 inhibition in adipocytes reduces by 60% COX-2 expression induced by a conditioned medium from lipopolysaccharide (LPS)-treated macrophages. Importantly, LPS was less efficient to induce COX-2 mRNA in adipose tissue explants of Tpl2 null mice compared with wild-type and Tpl2 null mice displayed low COX-2 mRNA induction in adipose tissue in response to LPS injection. Collectively, these data established that activation of Tpl2 by inflammatory stimuli in adipocytes and adipose tissue contributes to increase COX-2 expression and production of PGE2 that could participate in the modulation of adipose tissue inflammation during obesity.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Caspase 3/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/deficiência , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
15.
Mol Cancer Ther ; 14(2): 586-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527635

RESUMO

Cell migration is a critical step in the progression of prostate cancer to the metastatic state, the lethal form of the disease. The antidiabetic drug metformin has been shown to display antitumoral properties in prostate cancer cell and animal models; however, its role in the formation of metastases remains poorly documented. Here, we show that metformin reduces the formation of metastases to fewer solid organs in an orthotopic metastatic prostate cancer cell model established in nude mice. As predicted, metformin hampers cell motility in PC3 and DU145 prostate cancer cells and triggers a radical reorganization of the cell cytoskeleton. The small GTPase Rac1 is a master regulator of cytoskeleton organization and cell migration. We report that metformin leads to a major inhibition of Rac1 GTPase activity by interfering with some of its multiple upstream signaling pathways, namely P-Rex1 (a Guanine nucleotide exchange factor and activator of Rac1), cAMP, and CXCL12/CXCR4, resulting in decreased migration of prostate cancer cells. Importantly, overexpression of a constitutively active form of Rac1, or P-Rex, as well as the inhibition of the adenylate cyclase, was able to reverse the antimigratory effects of metformin. These results establish a novel mechanism of action for metformin and highlight its potential antimetastatic properties in prostate cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Biol Aujourdhui ; 208(2): 97-107, 2014.
Artigo em Francês | MEDLINE | ID: mdl-25190570

RESUMO

Insulin resistance is often associated with obesity and is a major risk factor for development of type 2 diabetes as well as cardiovascular and hepatic diseases. Insulin resistance may also increase the incidence or the aggressiveness of some cancers. Insulin resistance occurs owing to defects in insulin signaling in target tissues of this hormone. During the last ten years, it became evident that the chronic low-grade inflammatory state that develops during obesity plays an important role in insulin resistance development. Indeed, inflammatory cytokines activate several signaling pathways that impinge on the insulin signaling pathway. Among them, this review will focus on the implication of the MAP kinases JNK and ERK1/2 signaling in the development of insulin signaling alterations and will discuss the possibility to target these pathways in order to fight insulin resistance.


Assuntos
Inflamação/enzimologia , Resistência à Insulina , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Obesidade/imunologia , Obesidade/metabolismo , Animais , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Transdução de Sinais/fisiologia
17.
Endocrinology ; 155(3): 951-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424060

RESUMO

Adipose tissue inflammation is associated with the development of insulin resistance. In obese adipose tissue, lipopolysaccharides (LPSs) and saturated fatty acids trigger inflammatory factors that mediate a paracrine loop between adipocytes and macrophages. However, the inflammatory signaling proteins underlying this cross talk remain to be identified. The mitogen-activated protein kinase kinase kinase tumor progression locus 2 (Tpl2) is activated by inflammatory stimuli, including LPS, and its expression is up-regulated in obese adipose tissue, but its role in the interaction between adipocytes and macrophages remains ill-defined. To assess the implication of Tpl2 in the cross talk between these 2 cell types, we used coculture system and conditioned medium (CM) from macrophages. Pharmacological inhibition of Tpl2 in the coculture markedly reduced lipolysis and cytokine production and prevented the decrease in adipocyte insulin signaling. Tpl2 knockdown in cocultured adipocytes reduced lipolysis but had a weak effect on cytokine production and did not prevent the alteration of insulin signaling. By contrast, Tpl2 silencing in cocultured macrophages resulted in a marked inhibition of cytokine production and prevented the alteration of adipocyte insulin signaling. Further, when Tpl2 was inhibited in LPS-activated macrophages, the produced CM did not alter adipocyte insulin signaling and did not induce an inflammatory response in adipocytes. By contrast, Tpl2 silencing in adipocytes did not prevent the deleterious effects of a CM from LPS-activated macrophages. Together, these data establish that Tpl2, mainly in macrophages, is involved in the cross talk between adipocytes and macrophages that promotes inflammatory changes and alteration of insulin signaling in adipocytes.


Assuntos
Adipócitos/citologia , Resistência à Insulina , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Inativação Gênica , Inflamação , Insulina/metabolismo , Lipólise , Lipopolissacarídeos/química , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Transdução de Sinais
18.
Blood ; 122(14): 2402-11, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23966420

RESUMO

Caloric restriction (CR) is proposed to decrease tumorigenesis through a variety of mechanisms including effects on glycolysis. However, the understanding of how CR affects the response to cancer therapy is still rudimentary. Here, using the Eµ-Myc transgenic mouse model of B-cell lymphoma, we report that by reducing protein translation, CR can reduce expression of the prosurvival Bcl-2 family member Mcl-1 and sensitize lymphomas to ABT-737-induced death in vivo. By using Eµ-Myc lymphoma cells lacking p53, we showed that CR mimetics such as 2-deoxyglucose led to a decrease in Mcl-1 expression and sensitized lymphoma cells to ABT-737-induced death independently of p53. In keeping with this, Eµ-Myc lymphoma cells lacking the BH3-only proapoptotic members Noxa, Puma, or Bim were also sensitized by CR mimetics to ABT-737-induced death. Remarkably, neither the loss of both Puma and Noxa, the loss of both Puma and Bim, nor the loss of all three BH3-only proteins prevented sensitization to ABT-737 induced by CR mimetics. Thus, CR can influence Mcl-1 expression and sensitize cells to BH3 mimetic-induced apoptosis, independently of the main BH3-only proteins and of p53. Exploiting this may improve the efficiency of, or prevent resistance to, cancer therapy.


Assuntos
Restrição Calórica , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Compostos de Bifenilo/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Sulfonamidas/farmacologia
19.
Ann Endocrinol (Paris) ; 74(2): 130-6, 2013 May.
Artigo em Francês | MEDLINE | ID: mdl-23587351

RESUMO

Cancer and type II diabetes are two diseases that appear to be associated. In fact, diabetes increases the incidence of several cancers (colon, endometrium, rectum and breast). Retrospective epidemiological studies show that metformin, a drug commonly used in type II diabetes, has antitumor properties. Therefore, many experimental studies (in vivo and in vitro) have been initiated in recent years to understand the cellular and molecular mechanisms that may explain the protective effects of metformin against cancer. Two main mode of action have been proposed. The first, indirect, involves the decrease of insulinemia. The second, via a direct action on cells, results in the regulation of the activated AMPK kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, which plays a central role in many cellular processes such as energy metabolism, protein synthesis, autophagy and apoptosis. Here, we review recent results concerning the antitumor action of metformin: epidemiological, metabolic, cellular and molecular levels. Ongoing experimental and clinical trials should help us better understand the mechanisms of action of metformin and allow us to determine whether the drug can be used in the treatment of cancer.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Humanos , Incidência , Neoplasias/epidemiologia , Neoplasias/etiologia
20.
Diabetes ; 61(8): 1986-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688341

RESUMO

In obesity, white adipose tissue (WAT) inflammation is linked to insulin resistance. Increased adipocyte chemokine (C-C motif) ligand 2 (CCL2) secretion may initiate adipose inflammation by attracting the migration of inflammatory cells into the tissue. Using an unbiased approach, we identified adipose microRNAs (miRNAs) that are dysregulated in human obesity and assessed their possible role in controlling CCL2 production. In subcutaneous WAT obtained from 56 subjects, 11 miRNAs were present in all subjects and downregulated in obesity. Of these, 10 affected adipocyte CCL2 secretion in vitro and for 2 miRNAs (miR-126 and miR-193b), regulatory circuits were defined. While miR-126 bound directly to the 3'-untranslated region of CCL2 mRNA, miR-193b regulated CCL2 production indirectly through a network of transcription factors, many of which have been identified in other inflammatory conditions. In addition, overexpression of miR-193b and miR-126 in a human monocyte/macrophage cell line attenuated CCL2 production. The levels of the two miRNAs in subcutaneous WAT were significantly associated with CCL2 secretion (miR-193b) and expression of integrin, α-X, an inflammatory macrophage marker (miR-193b and miR-126). Taken together, our data suggest that miRNAs may be important regulators of adipose inflammation through their effects on CCL2 release from human adipocytes and macrophages.


Assuntos
Tecido Adiposo Branco/metabolismo , Quimiocina CCL2/biossíntese , MicroRNAs/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Linhagem Celular , Feminino , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA