RESUMO
Germline stem cells (GSCs) are a group of unique adult stem cells in gonads that act as important transmitters for genetic information. Donor GSCs have been used to produce offspring by transplantation in fisheries. In this study, we successfully isolated and enriched GSCs from the ovary, ovotestis, and testis of Monopterus albus, one of the most important breeding freshwater fishes in China. Transcriptome comparison assay suggests that a distinct molecular signature exists in each type of GSC, and that different signaling activities are required for the maintenance of distinct GSCs. Functional analysis shows that fGSCs can successfully colonize and contribute to the germline cell lineage of a host zebrafish gonad after transplantation. Finally, we describe a simple feeder-free method for the isolation and enrichment of GSCs that can contribute to the germline cell lineage of zebrafish embryos and generate the germline chimeras after transplantation.
Assuntos
Células-Tronco Adultas , Peixe-Zebra , Animais , Feminino , Células Germinativas , Gônadas , Masculino , Processos de Determinação Sexual , Peixe-Zebra/genéticaRESUMO
The luteinizing hormone surge is essential for fertility as it triggers ovulation in females and sperm release in males. We previously reported that secretoneurin-a, a neuropeptide derived from the processing of secretogranin-2a (Scg2a), stimulates luteinizing hormone release, suggesting a role in reproduction. Here we provide evidence that mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. Large-scale spawning within-line crossings (n = 82 to 101) were conducted. Wild-type (WT) males paired with WT females successfully spawned in 62% of the breeding trials. Spawning success was reduced to 37% (P = 0.006), 44% (P = 0.0169), and 6% (P < 0.0001) for scg2a-/- , scg2b-/- , and scg2a-/-;scg2b-/- mutants, respectively. Comprehensive video analysis indicates that scg2a-/-;scg2b-/- mutation reduces all male courtship behaviors. Spawning success was 47% in saline-injected WT controls compared to 11% in saline-injected scg2a-/-;scg2b-/- double mutants. For these mutants, spawning success increased 3-fold following a single intraperitoneal (i.p.) injection of synthetic secretoneurin-a (P = 0.0403) and increased 3.5-fold with injection of human chorionic gonadotropin (hCG). Embryonic survival at 24 h remained on average lower in scg2a-/-;scg2b-/- fish compared to WT injected with secretoneurin-a (P < 0.001). Significant reductions in the expression of gonadotropin-releasing hormone 3 in the hypothalamus, and luteinizing hormone beta and glycoprotein alpha subunits in the pituitary provide evidence for disrupted hypothalamo-pituitary function in scg2a and scg2b mutant fish. Our results indicate that secretogranin-2 is required for optimal reproductive function and support the hypothesis that secretoneurin is a reproductive hormone.
Assuntos
Fertilidade , Preferência de Acasalamento Animal , Mutação , Secretogranina II/genética , Proteínas de Peixe-Zebra/genética , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Neuropeptídeos/metabolismo , Oviposição , Ovulação , Hipófise/metabolismo , Secretogranina II/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
Kisspeptin2 is a neuropeptide widely found in the brain and multiple peripheral tissues in the zebrafish. The pituitary is the center of synthesis and secretes various endocrine hormones. However, Kiss2 innervation in the zebrafish pituitary is unknown. In this study, the organization of Kiss2 cells and structures in the zebrafish pituitary by promoter-driving mCherry-labeling Kiss2 neurons were investigated. Kiss2 neurons in the hypothalamus do not project into the pituitary. Kiss2 cells are found in the female pituitary. Unidentified Kiss2 cells and extensions are located in the proximal pars distalis (PPD), similar to the distribution of Gnrh3 fibers. Kiss2 structures reside alongside Gnrh3 fibers. No Kiss2 structures are found in the male pituitary. The transcriptional expression of the kisspeptin receptor kiss1rb is detected in both female and male pituitaries. In situ hybridization shows that kiss1rb-positive cells are located in the PPD and pars intermedia (PI). In vitro Kiss2-10 treatment stimulates Akt and Erk phosphorylation and significantly induces lhß, fshß, and prl1 mRNA expression in the female pituitary. The results in this study suggest that Kiss2 and Kiss1rb may form an independent paracrine or autocrine system in the female zebrafish pituitary. Kiss2 and Kiss1rb signaling regulates the expression of pituitary hormones.
Assuntos
Kisspeptinas/fisiologia , Hipófise/metabolismo , Hormônios Hipofisários/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Células Cultivadas , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Regulação da Expressão Gênica , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Hormônios Hipofisários/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
A nitroreductase (NTR) responsive fluorescent probe, Na-NO2, comprising p-nitrobenzyl as the unique recognition group and 1,8-naphthalimide as fluorophore, was synthesized. Na-NO2 showed remarkable fluorescence "turn-on" signal in the presence of NTR under DMSO/H2O (1:19, v/v) buffered with PBS (pH = 7) solution in the presence of NADH (300 µM). Furthermore, the probe has a low detection limit down to 3.4 ng/mL and it is very sensitive towards the NTR in Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), normal and tumor cells such as HL-7702, HepG-2 and MCF-7.
Assuntos
Escherichia coli/enzimologia , Corantes Fluorescentes/química , Naftalimidas/química , Nitrorredutases/análise , Imagem Óptica , Staphylococcus aureus/enzimologia , Linhagem Celular , Corantes Fluorescentes/síntese química , Células Hep G2 , Humanos , Células MCF-7 , Naftalimidas/síntese química , Nitrorredutases/metabolismoRESUMO
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Assuntos
Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Diferenciação Sexual/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Benzamidas/farmacologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Embrião não Mamífero/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Razão de Masculinidade , Proteínas de Peixe-Zebra/genéticaRESUMO
Podophyllotoxin (PPT) is a chemotherapeutic agent which has shown significant anti-cancer effects through inhibiting microtubule assembly. However, because of the poor water solubility and obvious side effects, PPT cannot be used in clinical cancer therapy. In order to solve these problems, a novel glutathione-responsive PPT conjugate has been synthesized in which PPT was linked to an anti-mitotic cell penetrating peptide (PRA) via a disulfide linkage. In particular, the as-prepared PPT-PRA conjugate can self-assemble into vesicle in water, furthermore, another anti-cancer drug (doxorubicin was chosen as an example) can be loaded in the vesicle for synergistic drug delivery. For better cancer cells targeting, the vesicle was then modified with folic acid (FA). The results indicated that the as-prepared FA modified drug-loaded vesicle not only could overcome the poor water solubility and side effects of PPT but also exhibited targeted toxicity and synergistic therapeutic effect.
Assuntos
Antineoplásicos/química , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Glutationa/química , Podofilotoxina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Ácido Fólico/química , Glutationa/metabolismo , Células Hep G2 , Humanos , SolubilidadeRESUMO
Secretoneurin (SN) is a neuropeptide derived from specific proteolytic processing of the precursor secretogranin II (SgII). In zebrafish and other teleosts, there are two paralogs named sgIIa and sgIIb. Our results showed that neurons expressing sgIIb were aligned with central arteries in the hindbrain, demonstrating a close neurovascular association. Both sgIIb-/- and sgIIa-/-/sgIIb-/- mutant embryos were defective in hindbrain central artery development due to impairment of migration and proliferation of central artery cells. Further study revealed that sgIIb is non-cell autonomous and required for central artery development. Hindbrain arterial and venous network identities were not affected in sgIIb-/- mutant embryos, and the mRNA levels of Notch and VEGF pathway-related genes were not altered. However, the activation of MAPK and PI3K/AKT pathways was inhibited in sgIIb-/- mutant embryos. Reactivation of MAPK or PI3K/AKT in endothelial cells could partially rescue the central artery developmental defects in the sgIIb mutants. This study provides the first in vivo evidence that sgIIb plays a critical role in neurovascular modeling of the hindbrain. Targeting the SgII system may, therefore, represent a new avenue for the treatment of vascular defects in the central nervous system.
Assuntos
Artérias/embriologia , Rombencéfalo/irrigação sanguínea , Secretogranina II/metabolismo , Proteínas de Peixe-Zebra/farmacologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Artérias/citologia , Movimento Celular , Proliferação de Células , Embrião não Mamífero , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mutação , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Rombencéfalo/embriologia , Secretogranina II/genética , Secretogranina II/fisiologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
Growth and reproduction are closely related. Growth hormone (GH)-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase) and igfbp1 (insulin-like growth factor binding protein) as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1) and sla (somatolactin a), which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2), gthα (gonadotropin hormone, alpha polypeptide), fshß (follicle stimulating hormone, beta polypeptide), lhß [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A) in the gonad, and cyp19a1b (aromatase B) in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone), drd1 (dopamine receptor D1), drd3 (dopamine receptor D3), and drd4 (dopamine receptor D4) exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshß, lhß expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the pituitary might be part of the response to overexpression of GH and the resulting delay in puberty onset.
RESUMO
The main reason for abnormal development of cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear donors. As we know, fam60al (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish fam60al-/- mutant line using transcription activator-like effector nucleases (TALENs), and found that both nanog and klf4b expression significantly decreased while myca expression significantly increased in fam60al-/- mutant embryos. Concurrently, we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, nanog, klf4b and myca expression was down-regulated, accompanying a decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (lncRNA) of fam60al, named fam60al-AS, which negatively regulated fam60al by forming double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed these findings. Taken together, these results suggest that fam60al is a novel factor related to the reprogramming of somatic cell nuclear transfer in zebrafish, which is regulated by its reverse lncRNA.
Assuntos
Reprogramação Celular/fisiologia , Técnicas de Transferência Nuclear , RNA Mensageiro/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Reprogramação Celular/genética , Hibridização In Situ , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
N6-methyladenosine (m6A), catalyzed by Mettl3 methyltransferase, is a highly conserved epigenetic modification in eukaryotic messenger RNA (mRNA). Previous studies have implicated m6A modification in multiple biological processes, but the in vivo function of m6A has been difficult to study, because mettl3 mutants are embryonic lethal in both mammals and plants. In this study, we have used transcription activator-like effector nucleases and generated viable zygotic mettl3 mutant, Zmettl3m/m , in zebrafish. We find that the oocytes in Zmettl3m/m adult females are stalled in early development and the ratio of full-grown stage (FG) follicles is significantly lower than that of wild type. Human chorionic gonadotropin-induced ovarian germinal vesicle breakdown in vitro and the numbers of eggs ovulated in vivo are both decreased as well, while the defects of oocyte maturation can be rescued by sex hormone in vitro and in vivo In Zmettl3m/m adult males, we find defects in sperm maturation and sperm motility is significantly reduced. Further study shows that 11-ketotestosterone (11-KT) and 17ß-estradiol (E2) levels are significantly decreased in Zmettl3m/m , and defective gamete maturation is accompanied by decreased overall m6A modification levels and disrupted expression of genes critical for sex hormone synthesis and gonadotropin signaling in Zmettl3m/m Thus, our study provides the first in vivo evidence that loss of Mettl3 leads to failed gamete maturation and significantly reduced fertility in zebrafish. Mettl3 and m6A modifications are essential for optimal reproduction in vertebrates.
Assuntos
Diferenciação Celular/genética , Fertilidade , Células Germinativas/metabolismo , Metiltransferases/genética , Mutação , Peixe-Zebra/fisiologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Cromatografia Líquida , Feminino , Fertilidade/genética , Deleção de Genes , Expressão Gênica , Técnicas de Inativação de Genes , Gônadas/metabolismo , Masculino , Oócitos/metabolismo , Espermatozoides/metabolismo , Espectrometria de Massas em TandemRESUMO
γ-Aminobutyric acid (GABA) is a major amino acid neurotransmitter in the vertebrate brain. To provide detailed information on the distribution of the GABA in zebrafish (Danio rerio), neurons were labeled with mCherry driven by the glutamic acid decarboxylase 67 (gad67) promoter. In the transgenic line Tg(gad67:mCherry), mCherry-positive gad67 cell bodies were predominantly localized to the olfactory bulb, pallial zones, subpallium zones, parvocellular preoptic nucleus, periventricular gray zone of optic tectum, torus semicircularis, posterior tuberculum, medial longitudinal fascicle, caudal zone of periventricular hypothalamus, and oculomotor nucleus. mCherry-positive fibers were widely distributed in the olfactory bulbs, subpallium, thalamus, ventral hypothalamic zone, tectum opticum, mesencephalon, and rhombencephalon. mCherry-positive neurons were also observed in the retina and the spinal cord. The anatomical relationships between GABAergic and gonadotrophin-releasing hormone 3 (GnRH3) neurons were investigated by crossing Tg(gad67:mCherry) fish with the previously established Tg(gnrh3:EGFP) transgenic line. GnRH3 cell bodies and fibers were contacted by GABAergic fibers directly in the ventral telencephalon and anterior tuberal nucleus. A subpopulation of GnRH3 neurons in the ventral telencephalic area was also labeled with mCherry, so some GnRH3 neurons are also GABAergic. GABAB receptor agonist (baclofen) and antagonist (CGP55845) treatments indicated that GABAB receptor signaling inhibited gnrh3 expression in larval fish but was stimulatory in adult fish. The expression of pituitary lhß and fshß was stimulated by intraperitoneal injection of baclofen in adult fish. We conclude that GABA via GABAB receptors regulates GnRH3 neurons in a developmentally dependent manner in zebrafish.