Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37875111

RESUMO

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbono , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Metotrexato/farmacologia , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Neoplasias/tratamento farmacológico , Quimera de Direcionamento de Proteólise , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
mBio ; 15(2): e0314223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131664

RESUMO

Plasmodium fertilization, an essential step for the development of the malaria parasite in the mosquito, is a prime target for blocking pathogen transmission. Using phage peptide display screening, we identified MG1, a peptide that binds to male gametes and inhibits fertilization, presumably by competing with a female gamete ligand. Anti-MG1 antibodies bind to the female gamete surface and, by doing so, also inhibit fertilization. We determined that this antibody recognizes HSP90 on the surface of Plasmodium female gametes. Our findings establish Plasmodium HSP90 as a prime target for the development of a transmission-blocking vaccine.IMPORTANCEMalaria kills over half a million people every year and this number has not decreased in recent years. The development of new tools to combat this disease is urgently needed. In this article, we report the identification of a key molecule-HSP90-on the surface of the parasite's female gamete that is required for fertilization to occur and for the completion of the parasite cycle in the mosquito. HSP90 is a promising candidate for the development of a transmission-blocking vaccine.


Assuntos
Culicidae , Plasmodium , Vacinas , Animais , Masculino , Feminino , Humanos , Células Germinativas/metabolismo , Culicidae/parasitologia , Fertilização , Peptídeos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
3.
ACS Pharmacol Transl Sci ; 5(10): 993-1006, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268125

RESUMO

Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.

4.
Mol Biol Cell ; 33(13): ar120, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074076

RESUMO

RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[b]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation. A concise structure-activity relationship campaign (SAR) around the Stattic chemotype led to the synthesis of FX12, which has diminished activity in inhibition of STAT3 activation and retains dislocation inhibitory activity. FX12 binds to RNF5 and inhibits its E3 activity in vitro as well as promoting proteasomal degradation of RNF5 in cells. RNF5 as a molecular target for FX12 was supported by the facts that FX12 requires RNF5 to inhibit dislocation and negatively regulates RNF5 function. Thus, this study developed a small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase, providing a chemical biology tool for RNF5 research and therapeutic development.


Assuntos
Proteínas de Ligação a DNA , Ubiquitina , Óxidos S-Cíclicos , Proteínas de Ligação a DNA/metabolismo , Tiofenos/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Hum Mol Genet ; 31(15): 2639-2654, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35333353

RESUMO

XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1ß. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.


Assuntos
Endorribonucleases , Neoplasias , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HeLa , Humanos , Mitose , Neoplasias/genética , Peptídeo Sintases/genética , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética
6.
Nat Methods ; 18(5): 528-541, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33941937

RESUMO

Human pluripotent stem cells (hPSCs) are capable of extensive self-renewal yet remain highly sensitive to environmental perturbations in vitro, posing challenges to their therapeutic use. There is an urgent need to advance strategies that ensure safe and robust long-term growth and functional differentiation of these cells. Here, we deployed high-throughput screening strategies to identify a small-molecule cocktail that improves viability of hPSCs and their differentiated progeny. The combination of chroman 1, emricasan, polyamines, and trans-ISRIB (CEPT) enhanced cell survival of genetically stable hPSCs by simultaneously blocking several stress mechanisms that otherwise compromise cell structure and function. CEPT provided strong improvements for several key applications in stem-cell research, including routine cell passaging, cryopreservation of pluripotent and differentiated cells, embryoid body (EB) and organoid formation, single-cell cloning, and genome editing. Thus, CEPT represents a unique poly-pharmacological strategy for comprehensive cytoprotection, providing a rationale for efficient and safe utilization of hPSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Polifarmacologia , Técnicas de Cultura de Células , Criopreservação/métodos , Crioprotetores/química , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
7.
Toxicol Lett ; 338: 67-77, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290830

RESUMO

Chemical-peptide conjugation is the molecular initiating event in skin sensitization. The OECD test guideline uses a high-performance liquid chromatography/ultraviolet (HPLC/UV) detection method to quantify chemical-peptide conjugation in a direct peptide reactivity assay (DPRA), which measures the depletion of two synthetic peptides containing lysine or cysteine residues. To improve assay throughput, sensitivity and accuracy, an automated 384-well plate-based RapidFire solid-phase extraction (SPE) system coupled with tandem mass spectrometry (MS/MS) DPRA was developed and validated in the presence of a newly designed internal standard. Compared to the HPLC/UV-based DPRA, the automated SPE-MS/MS-based DPRA improved throughput from 16 min to 10 s per sample, and substrate peptides usage was reduced from 100 mM to 5 µM. When implementing the SPE-MS/MS-based DPRA into a high-throughput platform, we found 10 compounds that depleted lysine peptide and 24 compounds that depleted cysteine peptide (including 7 unreported chemicals from 55 compounds we tested) in a concentration-response manner. The adduct formation between cysteine and cinnamic aldehyde and ethylene glycol dimethacrylate were further analyzed using high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF-MS) to confirm the conjugation. Overall, the automated SPE-MS/MS-based platform is an efficient, economic, and accurate way to detect skin sensitizers.


Assuntos
Alérgenos/toxicidade , Cromatografia Líquida de Alta Pressão , Dermatite Alérgica de Contato/etiologia , Ensaios de Triagem em Larga Escala , Peptídeos/química , Pele/efeitos dos fármacos , Espectrometria de Massas em Tandem , Testes de Toxicidade , Alérgenos/química , Alternativas aos Testes com Animais , Cromatografia Líquida de Alta Pressão/normas , Cisteína , Ensaios de Triagem em Larga Escala/normas , Humanos , Lisina , Padrões de Referência , Reprodutibilidade dos Testes , Medição de Risco , Espectrometria de Massas em Tandem/normas
8.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902275

RESUMO

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Camundongos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Biol Chem ; 294(46): 17654-17668, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481464

RESUMO

WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.


Assuntos
Ativadores de Enzimas/química , Fosfopeptídeos/química , Proteína Fosfatase 2C/química , Bibliotecas de Moléculas Pequenas/química , Ativadores de Enzimas/isolamento & purificação , Ativadores de Enzimas/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Proteína Fosfatase 2C/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato , Proteína Supressora de Tumor p53/química
10.
Front Microbiol ; 10: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891005

RESUMO

In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3-5% and early development of P. falciparum exoerythrocytic forms-a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax.

11.
Parasit Vectors ; 9(1): 274, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165123

RESUMO

BACKGROUND: Malaria parasites are transmitted by Anopheles mosquitoes. Although several studies have identified mosquito midgut surface proteins that are putatively important for Plasmodium ookinete invasion, only a few have characterized these protein targets and demonstrated transmission-blocking activity. Molecular information about these proteins is essential for the development of transmission-blocking vaccines (TBV). The aim of the present study was to test three monoclonal antibodies (mAbs), A-140, A-78 and A-10, for their ability to recognize antigens and block oocyst infection of the midgut of Anopheles albimanus, a major malaria vector in Latin America. METHOD: Western-blot of mAbs on antigens from midgut brush border membrane vesicles was used to select antibodies. Three mAbs were tested by membrane feeding assays to evaluate their potential transmission-blocking activity against Plasmodium berghei. The cognate antigens recognized by mAbs with oocyst-reducing activity were determined by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. RESULTS: Only one mAb, A-140, significantly reduced oocyst infection intensity. Hence, its probable protein target in the Anopheles albimanus midgut was identified and characterized. It recognized three high-molecular mass proteins from a midgut brush border microvilli vesicle preparation. Chemical deglycosylation assays confirmed the peptide nature of the epitope recognized by mAb A-140. Immunoprecipitation followed by proteomic identification with tandem mass spectrometry revealed five proteins, presumably extracted together as a complex. Of these, AALB007909 had the highest mascot score and corresponds to a protein with a myosin head motor domain, indicating that the target of mAb A-140 is probably myosin located on the microvilli of the mosquito midgut. CONCLUSION: These results provide support for the participation of myosin in mosquito midgut invasion by Plasmodium ookinetes. The potential inclusion of this protein in the design of new multivalent vaccine strategies for blocking Plasmodium transmission is discussed.


Assuntos
Anopheles/imunologia , Anticorpos Monoclonais/imunologia , Insetos Vetores/imunologia , Malária/transmissão , Miosinas/imunologia , Plasmodium berghei/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Sistema Digestório/imunologia , Sistema Digestório/parasitologia , Feminino , Insetos Vetores/parasitologia , Malária/parasitologia , Oocistos , Proteômica
12.
J Proteome Res ; 14(3): 1621-6, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25574574

RESUMO

Metabolomics and peptidomics are systems biology approaches in which broad populations of molecular species produced in a cell or tissue sample are identified and quantified. These two molecular populations, metabolites and peptides, can be extracted from tissues in a similar fashion, and we therefore have here developed an integrated platform for their extraction and characterization. This was accomplished by liquid-liquid extraction of peptides and metabolites from tissue samples and online strong cation exchange (SCX) separation to allow characterization of each population individually. The platform was validated both by a mixed set of purified standards and by an analysis of splenic tissue from SIV-infected macaques, showing both good reproducibility in chromatography, with relative standard deviation (RSD) of hold time less than 0.4%, and clear separation of charge state, with ∼ 95% of molecular features in SCX separated runs at charge states of +1 or +2. Finally, we used this platform to analyze the physiological response to infection in the spleen, showing that the spleen contains an abundance of hemoglobin-derived peptides, which do not appear to change in response to infection, and that there appears to be a large and variable metabolic response to infection. We therefore present a method for peptidomic and metabolomic profiling which is simple, robust, and easy to implement.


Assuntos
Cromatografia por Troca Iônica/métodos , Dispositivos Lab-On-A-Chip , Metabolômica , Peptídeos/química
13.
Proteomics ; 15(2-3): 545-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25266554

RESUMO

Kupffer cells (KCs) are the first line of defense in the liver against pathogens, yet several microbes successfully target the liver, bypass immune surveillance, and effectively develop in this tissue. Our current, albeit poor, understanding of KC-pathogen interactions has been largely achieved through the study of primary cells, requiring isolation from large numbers of animals. To facilitate the study of KC biology, an immortalized rat KC line 1, RKC1, was developed. We performed a comparative global proteomic analysis of RKC1 and primary rat KCs (PRKC) to characterize their respective responses to lipopolysaccharide-mediated immune stimulation. We identified patent differences in the proteomic response profile of RKC1 and PRKC to lipopolysaccharide. We observed that PRKC upregulated more immune function pathways and exhibited marked changes in cellular morphology following stimulation. We consequently analyzed the cytoskeletal signaling pathways of these cells in light of the fact that macrophages are known to induce cytoskeletal changes in response to pathogens. Our findings suggest that KCs respond differently to inflammatory stimulus than do monocyte-derived macrophages, and such data may provide insight into how pathogens, such as the malaria parasite, may have evolved mechanisms of liver entry through KCs without detection.


Assuntos
Células de Kupffer/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Proteínas/imunologia , Proteômica , Transdução de Sinais , Animais , Linhagem Celular , Células Cultivadas , Citoesqueleto/imunologia , Células de Kupffer/citologia , Macrófagos/citologia , Pinocitose , Proteínas/análise , Ratos
14.
Sci Rep ; 4: 5487, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24976158

RESUMO

Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g(-1). And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.


Assuntos
Albuminas/isolamento & purificação , Impressão Molecular/métodos , Polímeros/química , Proteínas/química , Proteômica/métodos , Soro/química , Adsorção , Albuminas/química , Animais , Humanos , Suínos
15.
Mol Cell Proteomics ; 13(5): 1153-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532842

RESUMO

The routine study of human malaria liver-stage biology in vitro is hampered by low infection efficiency of human hepatocellular carcinoma (HCC) lines (<0.1%), poor understanding of steady-state HCC biology, and lack of appropriate tools for trace sample analysis. HC-04 is the only HCC that supports complete development of human malaria parasites. We hypothesized that HCCs are in various intermediate stages of the epithelial-mesenchymal transition (EMT) and HC-04s retain epithelial characteristics that permit infection. We developed a facile analytical approach to test this hypothesis viz. the HC-04 response to hepatocyte growth factor (HGF). We used online two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) to quantify protein expression profiles in HC-04 pre-/post-HGF treatment and validated these results by RT-qPCR and microscopy. We successfully increased protein identification efficiency over offline-2D methods by 12-fold, using less sample material, allowing robust protein quantification. We observed expected up-regulation and down-regulation of EMT protein markers in response to HGF, but also unexpected cellular responses. We also observed that HC-04 is generally more susceptible to HGF-mediated signaling than what was observed for HepG2, a widely used, but poor malaria liver stage-HCC model. Our analytical approach to understanding the basic biology of HC-04 helps us understand the factors that may influence its utility as a model for malaria liver-stage development. We observed that HC-04 treatment with HGF prior to the addition of Plasmodium falciparum sporozoites did not facilitate cell invasion, which suggests unlinking the effect of HGF on malaria liver stage development from hepatocyte invasion. Finally, our 2D-LC-MS/MS approach and broadly applicable experimental strategy should prove useful in the analysis of various hepatocyte-pathogen interactions, tumor progression, and early disease events.


Assuntos
Linhagem Celular Tumoral/parasitologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Modelos Biológicos , Plasmodium falciparum/fisiologia , Linhagem Celular Tumoral/citologia , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Transporte Proteico , Proteômica , Proteínas de Protozoários/metabolismo
16.
J Sep Sci ; 35(14): 1764-70, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22623513

RESUMO

An integrated multidimensional nano-flow liquid chromatography platform with the combination of protein and peptide separation via online digestion by an immobilized enzymatic reactor was established, and successfully applied for proteome analysis. By this platform, proteins were first separated by a weak anion and weak cation mixed-bed microcolumn under a series of salt steps, online digested by a trypsin immobilized enzymatic reactor, digests trapped and desalted by a C18 precolumn, separated by nano-reversed phase liquid chromatography, and finally identified by electrospray ionization-MS/MS. To evaluate the performance of such a platform, Escherichia coli whole cell lysate proteins were analyzed. Compared with the results obtained by shotgun approach, the identified protein number was increased by 6%, with the consumed time decreased from 38 to 14 h. We also compared with integrate platform based on micro-HPLC, and the required sample amount was decreased to 8 µg. These results demonstrated that such an integrated approach would be an attractive alternative to commonly applied approaches for proteome research.


Assuntos
Cromatografia Líquida/métodos , Peptídeos/análise , Proteínas/análise , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida/instrumentação , Escherichia coli/química , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/isolamento & purificação , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/instrumentação
17.
J Proteome Res ; 10(2): 732-8, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21121671

RESUMO

Two dimensional high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (2D-HPLC-ESI-MS/MS) is one of the most powerful techniques for high resolution, efficiency, and throughput separation and identification of proteomes. For a bottom-up strategy-based proteome analysis, usually multistep salt elution was needed in the first dimension separation by SCX, to simplify the peptides for the further second dimensional separation by RPLC. Here, by using a 30 cm-long serially coupled long column (SCLC) in the second dimension, we reduced the salt steps of SCX from 13 to 5 to shorten the total analysis time. Compared to the commonly applied 2D-HPLC with over 10-step salt elution in SCX and microRPLC with a short column (SC), named as SC-2D, the peak capacity of 2D-HPLC with a SCLC column, named as SCLC-2D, was increased 3.3-folds while the analysis time was increased by only 1.17-folds. Therefore, the time-based protein identification efficiency was ∼55 protein groups/h, nearly 2-fold of that for SC-2D (∼28 protein groups/h). With the further combination of assisted solubilization by ionic liquids and SCLC-2D, 608 integral membrane proteins (IMPs) (27.66% of the total 2198 proteins, FDR < 1%) were identified from rat brain, more than those obtained by the traditional urea method (252 unique IMPs, occupying 17.03% of total 1480 proteins). All of these results demonstrate the promise of the developed technique for large-scale proteome analysis.


Assuntos
Química Encefálica , Cromatografia por Troca Iônica/métodos , Líquidos Iônicos/química , Proteínas de Membrana/química , Mapeamento de Peptídeos/métodos , Acetatos/química , Acetonitrilas/química , Animais , Encéfalo/metabolismo , Cátions/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica/instrumentação , Formiatos/química , Proteínas de Membrana/isolamento & purificação , Ratos , Espectrometria de Massas por Ionização por Electrospray
18.
Se Pu ; 29(9): 851-6, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22233071

RESUMO

A strategy with the combination of multiprotease digestion and the selective enrichment of phosphopeptides by silica hybrid monolith based immobilized Ti4+ affinity chromatography (Ti4+ -IMAC) was proposed, and applied in the global profiling of phosphorylated membrane proteome of neuroblastoma SH-SY5Y cells. The fraction of membrane proteins was extracted by ultra speed centrifuge, followed by washing with 1 mol/L sodium chloride and 0.1 mol/L sodium carbonate. For digestion, chymotrypsin and pepsin with broader specificity were used as complementary enzymes to trypsin. The phosphopeptides were then selectively enriched by monolithic Ti4+ -IMAC column, and analyzed by nanoflow high performance liquid chromatography and mass spectrometry. A total of 43 phosphoproteins were identified, among which 14 proteins were located on the membrane. All these results demonstrated that the proposed strategy might be promising to promote the in-depth study of neuroblastoma and discover the candidate biomarkers.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas de Membrana/análise , Neuroblastoma/patologia , Fosfoproteínas/análise , Proteoma/análise , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/metabolismo , Fosfopeptídeos/química , Titânio/química
19.
J Proteome Res ; 9(8): 4093-101, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20568813

RESUMO

A novel kind of immobilized metal affinity chromatography (IMAC) column based on organic-inorganic hybrid silica monolith has been developed. The monolithic support was prepared in a 250 microm i.d. capillary by the sol-gel method with tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) as precursors. Subsequently, amine groups were functionalized by glutaraldehyde, and then activated with (aminomethyl) phosphonic acid, followed by Ti(4+) chelation. By such a hybrid silica monolithic Ti(4+)-IMAC column, 15 phosphopeptides were effectively isolated from the digest mixture of alpha-casein and BSA with the molar ratio as low as 1:200, illustrating its superior selectivity. With a synthetic phosphorylated peptide, YKVPQLEIVPNSpAEER, as the sample, the loading capacity and recovery of the Ti(4+)-IMAC monolithic column were measured to be 1.4 micromol/mL and 69%, respectively. Such an IMAC monolithic column was further applied to enrich phosphopeptides from rat liver mitochondria. In total, 224 unique phosphopeptides, corresponding to 148 phosphoprotein groups, were identified by duplicate nanoRPLC-LTQ MS/MS/MS runs with a false-positive rate of less than 1% at the peptide level. These results demonstrate that the hybrid silica monolith based Ti(4+)-IMAC column might provide a promising tool for large-scale phosphopeptide enrichment, facilitating the in-depth understanding of the biological functions of phosphoproteomes.


Assuntos
Cromatografia de Afinidade/métodos , Fígado/química , Proteínas Mitocondriais/análise , Peptídeos/análise , Fosfoproteínas/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/genética , Propilaminas , Ratos , Silanos , Dióxido de Silício , Espectrometria de Massas em Tandem , Titânio
20.
Se Pu ; 28(1): 34-7, 2010 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-20458917

RESUMO

Screening of tumor markers by proteomic technology is the research focus and key of early diagnosis of stomach cancer study. Aiming at the complexity of the extracted proteins from biological tissue, reversed-phase high performance liquid chromatography (RP-HPLC) was employed as one of the most efficient chromatographic methods. Based on the difference of hydrophobicity, RP-HPLC separation was performed to reduce the complexity of stomach cancer tissue and normal tissue samples, separately. By comparing the chromatograms, different components were collected. The fractions with the retention times from 45 min to 47 min were digested and identified by liquid chromatography-multistage mass spectrometry (LC-MS/MS). Nine common proteins were found in both tumor tissue and normal tissue. Six specific proteins were screened in normal tissue and seventeen specific proteins were found in tumor tissue under the same conditions. Two proteins with higher abundance in tumor tissue were selected for further investigation. These proteins provide more information for future drug target and drug pathway research by the analysis of biological information.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Neoplasias Gástricas/química , Estômago/química , Adenocarcinoma/química , Humanos , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA