Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 166883, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690764

RESUMO

Mature landfill leachate is a refractory organic wastewater, and needs physical and chemical pretreatments contemporaneously, e.g. iron-carbon micro-electrolysis (IC-ME). In this study, a novel iron-carbon (Fe-C) material was synthesized from waste activated sludge to be utilized in IC-ME for landfill leachate treatment. The pyrolysis temperature, mass ratio of iron to carbon, and solid-liquid ratio in leachate treatment were optimized as 900 °C with 1.59 and 34.7 g/L. Under these optimal conditions, the chemical oxygen demand (COD) removal efficiency reached 79.44 %, which was 2.6 times higher than that of commercial Fe-C material (30.1%). This excellent COD removal performance was indicated to a better mesoporous structure, and uniform distribution of zero-valent iron in novel Fe-C material derived from sludge. The contribution order of COD removal in IC-ME treatment for landfill leachate was proven as coagulation, adsorption, and redox effects by a contrast experiment. The removal of COD includes synthetic organic compounds, e.g. carcinogens, pharmaceuticals and personal care products. The contents of CHO, CHON, and CHOS compounds of dissolved organic matter (DOM) in the leachate were decreased, and both the molecular weight and unsaturation of lipids, lignin, and tannic acids concentration were also reduced. Some newly generated small molecular DOM in the treated leachate further confirmed the existence of the redox effect to degrade DOM in leachate. The total cost of sludge-derived Fe-C material was only USD$ 152.8/t, which could save 76% of total compared with that of commercial Fe-C materials. This study expands the prominent source of Fe-C materials with excellent performance, and deepens the understanding of its application for leachate treatment.

2.
Sci Total Environ ; 725: 138299, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278183

RESUMO

Fe-rich biochar with multivalent iron compounds (Fe0, Fe0.95C0.05, Fe3O4, and FeAl2O4) pyrolyzed from sludge cake conditioned with Fenton's reagent and red mud was utilized as an efficient Fenton catalyst for the degradation of 4-chlorophenol (4-CP). Effects of pyrolysis temperature and sludge conditioner composition on the transformation of iron compounds were studied. Both homogeneous Fenton reaction initiated by Fe2+ leached from both low-valent Fe0 and Fe0.95C0.05, and heterogeneous Fenton reaction initiated by solid iron phases of Fe3O4 and FeAl2O4 were revealed to contribute to the degradation of 4-CP. The removal efficiency of 4-CP remained 100% after five successive degradation rounds. The homogeneous Fenton reaction mainly works in the first degradation round, and the heterogeneous Fenton reaction dominates in subsequent degradation rounds. The findings of this study suggest that sewage sludge derived Fe-rich biochar could be utilized as an efficient Fenton catalyst for recalcitrant organics degradation.


Assuntos
Carvão Vegetal , Esgotos , Catálise , Clorofenóis , Peróxido de Hidrogênio , Ferro , Oxirredução
3.
Water Res ; 148: 60-69, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347276

RESUMO

Cell lysis in sludge pretreatment by advanced oxidation process (AOP) has a great effect on sludge dewaterability. Cell lysis caused by reactive radicals (e.g. hydroxyl radical) was dependent on the reaction site of AOP. However, little is known about the accurate radical generation site of AOP in sludge pretreatment. In this study, two kinds of oxidation behaviors from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron were comparatively investigated. Higher amount of living cells (84.3%) and hydroxyl radicals (9.86 × 10-5 M), and more fragmentized sludge flocs (particle sizes of D50 was 50.1 vs. 57.3 µm of RS) were detected in sludge conditioned by Fe2+/H2O2, which implied that Fenton reaction mainly happened at surface and outside of sludge flocs (such as EPS layer and liquid phase). Thus, it could be regarded as "extracellular oxidation". Fewer living cells (undetectable), fewer amount of hydroxyl radicals (undetectable in sludge), and more integrated sludge flocs (particle size of D50 was 56.1 vs. 57.3 µm of RS) were determined in sludge conditioned by Fe2+/Ca(ClO)2. Hence, it could be regarded as "Intracellular oxidation". In addition, sludge pretreatment based on Fe2+/Ca(ClO)2 could achieve simultaneous deep-dewatering performance and total coliforms inactivation. Based on response surface methodology, the optimal dosages of Fe2+ and Ca(ClO)2 were proposed as 106.1 and 234.5 mg/g volatile solids respectively, without any acidification of sludge. Under these optimal dosages, the water content of dewatered sludge cake was 51.9 ±â€¯0.1 wt% and the pH of the final filtrate was 5.8 ±â€¯0.2. Total coliforms of sludge could be inactivated in 10 s after Fe2+/Ca(ClO)2 addition.


Assuntos
Oxidantes , Esgotos , Catálise , Peróxido de Hidrogênio , Ferro , Oxirredução , Eliminação de Resíduos Líquidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA