Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38780292

RESUMO

ABSTRACT: Arteriosclerosis (AS) is a chronic inflammatory disease and Buyang Huanwu decoction (BHD) has been identified as an anti-atherosclerosis effect, and the study is aimed to investigate the underlying mechanism. The E4 allele of Apolipoprotein E (ApoE) is associated with both metabolic dysfunction and an enhanced pro-inflammatory response, ApoE-knockout (ApoE-/-) mice were fed with a high-fat diet to establish an arteriosclerosis model and treated with BHD or atorvastatin (as a positive control). The atherosclerotic plaque in each mouse was evaluated using Oil red O Staining. Elisa kits were used to evaluate blood lipid, interleukin-6 (IL-6), IL-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and tumor growth factor beta (TGF-ß) contents, while Western blot was applicated to measure inducible nitric oxide synthase (iNOS), arginase I (Arg-1) expression. Meanwhile, pyruvate kinase M2 (PKM2), hypoxia-inducible factor-1 alpha (HIF-1α) and its target genes glucose transporter type 1 (GLUT1), lactate dehydrogenase A (LDHA), and 3-phosphoinositide-dependent kinase 1 (PDK1), as well as IL-6, IL-1ß, TNF-α, IL-4, IL-10, and TGF-ß were evaluated by the quantitative reverse transcription-polymerase chain reaction. BHD treatment significantly reduced body weight and arteriosclerosis plaque area and blood lipid levels including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Meanwhile, BHD demonstrated a significant suppression of M1 polarization, by decreased secretion of iNOS and pro-inflammatory factors (IL-6, IL-1ß, and TNF-α) in ApoE-/- mice. The present study also revealed that BHD promotes the activation of M2 polarization, characterized by the expression of Arg-1 and anti-inflammatory factors (IL-4 and IL-10). In addition, PKM2/HIF-1α signaling was improved by M1/M2 macrophages polarization induced by BHD. The downstream target genes (GLUT1, LDHA, and PDK1) expression was significantly increased in high fat feeding ApoE-/- mice, and those of which were recused by BHD and Atorvastatin. These results suggested that M1/M2 macrophages polarization produce the inflammatory response against AS progress after BHD exposure.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Macrófagos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Modelos Animais de Doenças , Camundongos Knockout para ApoE , Camundongos Knockout , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594444

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Assuntos
Glioblastoma , NF-kappa B , Células-Tronco Neoplásicas , Transdução de Sinais , Macrófagos Associados a Tumor , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , NF-kappa B/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Cancer ; 15(9): 2486-2504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577605

RESUMO

PANoptosis is a newly described inflammatory programmed cell death, that highlights coordination between pyroptosis, apoptosis and necroptosis. However, the functions of PANoptosis-related genes in glioma progression still remain to be explored. This study aims to identify PANoptosis-related predictors that may be utilized for prognosis prediction and development of new therapeutic targets. Firstly, bulk and single-cell RNA-seq (scRNA-seq) data of glioma patients were extracted from TCGA, CGGA and GEO database. Genetic analysis indicates a considerably high mutation frequency of PANoptosis-related genes (PANRGs) in glioma. Consensus clustering was applied to reveal different subtypes of glioma based on PANRGs. Two PANoptosis subtypes with distinct prognostic and TME characteristics were identified. Then, with LASSO-Cox regression analysis, four PANoptosis-related predictors (MYBL2, TUBA1C, C21orf62 and KCNIP2) were determined from bulk and scRNA-seq analysis. Predictive PANRG score model was established with these predictors and its correlation with tumor microenvironment (TME) was investigated. The results showed that patients with low PANRG score, had higher infiltration of anti-tumor immune cells, higher MSI score and lower TIDE score, which are more likely to benefit from immunotherapy. Further analysis identified 16 potential drugs associated with PANoptosis-related predictors. Moreover, the expression levels of four PANoptosis-related predictors were examined in clinical samples and the results were consistent with those analyzed in the database. Besides, we also confirmed the biological functions of two oncogenic predictors (MYBL2 and TUBA1C) by cell experiments, which revealed that knockdown of MYBL2 or TUBA1C could significantly inhibit the proliferation and migration of glioma cells. These findings highlight the prognostic value and biological functions of PANRGs in glioma, which may provide valuable insights for individualized treatment.

4.
J Nanobiotechnology ; 21(1): 261, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553718

RESUMO

The development of natural membranes as coatings for nanoparticles to traverse the blood-brain barrier (BBB) presents an effective approach for treating central nervous system (CNS) disorders. In this study, we have designed a nanogel loaded with PACAP and estrogen (E2), sheathed with exosomes and responsive to reactive oxygen species (ROS), denoted as HA NGs@exosomes. The objective of this novel design is to serve as a potent drug carrier for the targeted treatment of perimenopausal depression. The efficient cellular uptake and BBB penetration of HA NGs@exosomes has been demonstrated in vitro and in vivo. Following intranasal intervention with HA NGs@exosomes, ovariectomized mice under chronic unpredictable mild stress (CUMS) have shown improved behavioral performance, indicating that HA NGs@exosomes produced a rapid-onset antidepressant effect. Moreover, HA NGs@exosomes exhibit notable antioxidant and anti-inflammatory properties and may regulate the expression of pivotal proteins in the PACAP/PAC1 pathway to promote synaptic plasticity. Our results serve as a proof-of-concept for the utility of exosome-sheathed ROS-responsive nanogel as a promising drug carrier for the treatment of perimenopausal depression.


Assuntos
Depressão , Exossomos , Camundongos , Animais , Nanogéis , Depressão/tratamento farmacológico , Depressão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Exossomos/metabolismo , Perimenopausa/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Portadores de Fármacos/metabolismo
5.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439870

RESUMO

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Macrófagos Associados a Tumor/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Microambiente Tumoral/genética
6.
Neuropeptides ; 101: 102350, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37285664

RESUMO

Yueju pill, a classic Chinese Medicine formulated, was recently found to produce rapid antidepressant-like effects in a PKA-CREB signaling-dependent manner. In our study, we found that the Yueju pill induced a remarkable increase in PACAP. The intracerebroventricular injection of PACAP agonist induced a rapid antidepressant-like effect; conversely, the intrahippocampal infusion of a PACAP antagonist reversed the antidepressant response of the Yueju pill. Mice with hippocampal PACAP knockdown via viral-mediated RNAi displayed depression-like behavior. PACAP knockdown also blunted the antidepressant effect of the Yueju pill. PACAP knockdown resulted in down-regulated CREB and expression of the synaptic protein PSD95 at both baselines and after administration of the Yueju pill. However, administration of the Yueju pill in the knockdown mice promoted PACAP and PKA levels. Chronically stressed mice showed deficient hippocampal PACAP-PKA-CREB signaling and depression-like behavior, which were reversed by a single dose of the Yueju pill. In this study, we demonstrated that the up-regulation of PACAP induced activating of PKA-CREB signaling would play a part in the rapid antidepressant-like effects of the Yueju pill. We also identified iridoids fraction of Gardenia jasminoides Ellis (GJ-IF), a vital component of the Yueju pill, was identified to recapitulate rapid antidepressant-like behavior through increased hippocampal PACAP expression of the Yueju pill. The promotion of hippocampal PACAP may collectively represent a novel mechanism of rapid antidepressant-like effect.


Assuntos
Medicamentos de Ervas Chinesas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Antidepressivos/farmacologia , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo
7.
Neuro Oncol ; 25(9): 1578-1591, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934350

RESUMO

BACKGROUND: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS: In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS: Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS: SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Colesterol/metabolismo , Regulação da Expressão Gênica , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Microambiente Tumoral
8.
Neurologist ; 28(3): 190-194, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125978

RESUMO

INTRODUCTION: The mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a matrilineal hereditary multisystem disease caused by mutations in the mitochondrial DNA. Although the initial diagnostic criteria correlate with a range of clinical phenotypes, including clinical onset after the age of 40, there is still lack of a unified single diagnostic standard for MELAS. CASE REPORT: A 71-year-old female patient with recurrent stroke was reported. Magnetic resonance imaging showed a cerebral gyrus-like diffusion weighted imaging high signal lesion in the parietal-occipital lobe and the area of this lesion expanded with disease progression. The MRS result showed significantly inverted Lac/Lip peaks. The nucleic acid sequencing result displayed a MT-TWm.5541C>T mutation, and a 12.86% mutation rate in the blood sample. The patient had a 6-year history of type 2 diabetes. CONCLUSION: Patients with the MELAS syndrome may present with a variety of clinical manifestations. Our data demonstrated that, for patients with atypical cerebral infarction and suspected MELAS syndrome, gene sequencing and muscle biopsy should be performed in time. This case provides a reference for the diagnostic criteria of MELAS syndrome.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Síndrome MELAS , Acidente Vascular Cerebral , Feminino , Humanos , Idoso , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Mutação/genética , DNA Mitocondrial/genética , Infarto Cerebral
9.
Neuro Oncol ; 25(8): 1428-1440, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521011

RESUMO

BACKGROUND: Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS: Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS: Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS: Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , DNA Ribossômico/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
10.
Cancer Res ; 82(18): 3321-3334, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841593

RESUMO

Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that ß2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-ß1 (TGFß1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFß1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE: ß2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFß1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Microglobulina beta-2/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ecossistema , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células-Tronco/patologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta1 , Macrófagos Associados a Tumor
11.
Biomaterials ; 287: 121621, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35704964

RESUMO

Clinical implementation of photothermal therapy (PTT) is mainly hampered by limited tissue penetration, undesirable thermal damage to normal tissues, and thermotolerence induced by heat shock proteins (HSPs). To overcome these obstacles, we constructed a novel gene-photothermal synergistic therapeutic nanoplatform composed of a multi-branched Au nanooctopus (AuNO) core and mesoporous polydopamine (mPDA) shell, followed by CRISPR-Cas9 ribonucleoprotein (RNP) loading and then polyethylene glycol-folic acid (PEG-FA) coating. AuNO was simply synthesized by adjusting the ratio of cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammonium bromide (CTAB), which showed significant localized surface plasmon resonances in the NIR-II window, and exhibited an excellent tissue penetration capability and high photothermal conversion efficiency (PCE, 47.68%). Even, the PCE could be further increased to 66.17% by mPDA coating. Furthermore, the sequential modification of AuNO@mPDA using RNP and PEG-FA can down-regulate HSP90α expression at tumor sites, enhance apoptosis and reduce the heat resistance of cancer cells. The synergistic effect of enhanced photothermal capacity and reduced thermoresistance addressed the multiple limitations of PTT, and presented excellent in vitro and in vivo antitumor efficacy, having great potential for the clinical application of PTT.

12.
Phytomedicine ; 99: 154007, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35259610

RESUMO

PURPOSE: Scutellaria barbata D. Don (SB), mainly containing flavonoids, has been frequently used for cancer treatment. However, little research has investigated the antitumor activity of flavonoids from SB (FSB). The current study aimed to assess the antitumor effect of TFSB and elucidate the probable underlying mechanism in vivo and in vitro. STUDY DESIGN: FSB was prepared, and its chemical composition was characterized by HPLC-MS. Colorectal HCT116 cells were treated with various concentration of FSB. The viability, proliferation, apoptosis, migration, and autophagy of HCT116 cells were studied, as were further confirmed in tumor xenografts. METHODS: Cell viability and proliferation were respectively examined by MTT and EdU staining. ROS was determined with DCFH-DA, and cell apoptosis was detected using flow cytometry. Transwell and wound-healing assays were performed to evaluate cell migration. Immunofluorescence was employed to evaluate sestrin2 and ATF4 level. The protein expressions of p-AMPK, p-ULK1, p-mTOR, 4E-BP1, LC3-I/II, cleaved-caspase-3, Bax, and bcl-2 were investigated by western blot. ATF4 was overexpressed in experiments to explore the role of ATF4/sestrin2 pathway in FSB-mediated efficacy. RESULTS: FSB clearly reduced the cell viability, promoted ROS generation, and induced apoptosis in HCT116 cells by down-regulated Bcl-2, and increased cleaved-caspase-3 and Bax. Furthermore, FSB significantly inhibited migration of colorectal cells in a dose-dependent manner. Further mechanistic study indicated that FSB upregulated p-mTOR protein level, and reduced p-AMPK, p-ULK1, p-mTOR, p-4E-BP1 and LC3-I/II expression, which were major autophagy-related genes. In addition, FSB could cause downregulation of endogenous mTOR inhibitor sestrin2 and ATF4 expression. Transient overexpression of ATF4 resulted in mTOR and sestrin2 inhibition, and significantly compromised the effects of FSB on apoptosis and autophagy in HCT116 cells. CONCLUSION: Our results reveal, for the first time, that FSB exerts antitumor activity through autophagy inhibition and apoptosis induction via ATF4/sestrin2 pathway in colorectal cancer cells. Scutellaria barbata D. Don may have great potential in the application for the prevention and treatment of human colorectal cancer.

13.
Int J Biochem Cell Biol ; 145: 106192, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257889

RESUMO

Colorectal cancer (CRC) is a highly common malignancy, being the third leading cause of cancer death worldwide. Recent epidemiological studies have indicated that carcinogenic effect of diet was mainly attributed to high-fat diets. To investigate the mechanism of high-fat diet-induced colorectal cancer, we systematically quantified the phosphoproteome in human HT-29 cells treated with sodium palmitate (PA). p-Annexin A2 (S26) was predicted to be specifically up-regulated by PA. We confirmed that PA-induced Annexin A2 phosphorylation at Ser26 in C57BL/6 J-ApcMin/J mice fed with high-fat diet. Phosphorylation of Annexin A2 at Ser26 promotes PA-induced proliferation of HT-29 cells. Moreover, PA suppressed SERCA activity and SERCA2 expression was compensatorily increased. Mechanistically, SERCA2 can partially reverse Annexin A2 phosphorylation at Ser26 caused by PA through intracellular calcium release. Finally, SERCA2 knockdown inhibited high-fat diet-induced tumor growth and Annexin A2 phosphorylation at Ser26 in SCID mice. In all, our studies demonstrate that high-fat diet promotes colorectal carcinogenesis through SERCA2 mediated serine phosphorylation of Annexin A2.


Assuntos
Anexina A2 , Neoplasias Colorretais , Animais , Anexina A2/metabolismo , Carcinogênese , Neoplasias Colorretais/patologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Fosforilação , Serina/metabolismo
14.
EMBO J ; 41(7): e109187, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191554

RESUMO

Hypoxia regulates tumor angiogenesis, metabolism, and therapeutic response in malignant cancers including glioblastoma, the most lethal primary brain tumor. The regulation of HIF transcriptional factors by the ubiquitin-proteasome system is critical in the hypoxia response, but hypoxia-inducible deubiquitinases that counteract the ubiquitination remain poorly defined. While the activation of ERK1/2 also plays an important role in hypoxia response, the relationship between ERK1/2 activation and HIF regulation remains elusive. Here, we identified USP33 as essential deubiquitinase that stabilizes HIF-2alpha protein in an ERK1/2-dependent manner to promote hypoxia response in cancer cells. USP33 is preferentially induced in glioma stem cells by hypoxia and interacts with HIF-2alpha, leading to its stabilization through deubiquitination. The activation of ERK1/2 upon hypoxia promoted HIF-2alpha phosphorylation, enhancing its interaction with USP33. Silencing of USP33 disrupted glioma stem cells maintenance, reduced tumor vascularization, and inhibited glioblastoma growth. Our findings highlight USP33 as an essential regulator of hypoxia response in cancer stem cells, indicating a novel potential therapeutic target for brain tumor treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Encefálicas , Glioma , Células-Tronco Neoplásicas , Ubiquitina Tiolesterase , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/patologia , Hipóxia Celular , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
15.
ACS Appl Mater Interfaces ; 14(5): 6404-6416, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077153

RESUMO

In situ oxygen generation is the most common strategy to boost reactive oxygen species (ROS) for enhancing the efficacy of phototherapy in cancer, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, hyperoxidation or hyperthermia often triggers stress-defense pathways and promotes tumor cell survival, thus severely limiting the therapeutic efficacy. To overcome the tumor hypoxia and thermal resistance existing in phototherapy, we constructed a self-synergistic nanoplatform for tumors by incorporating brusatol, a nuclear factor erythroid 2-related factor (Nrf2) inhibitor, into the silica nanonetwork. It was then sequentially decorated with MnO2 and the photosensitizer chlorin e6 (Ce6) and then coated with poly(ethylene glycol)-folate (PEG-FA)-functionalized polydopamine (PDA) (designated as brusatol/silica@MnO2/Ce6@PDA-PEG-FA). As an oxygen generator, MnO2 can promote ROS production, which not only directly enhances Ce6-mediated PDT but also strengthens PDA-mediated PTT by attacking heat shock proteins (HSPs). Particularly, brusatol could efficiently inhibit the activation of Nrf2 defense pathway under hyperoxidation and hyperthermia and cause glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH) inactivation, thereby inducing ferroptosis and ultimately enhancing the phototherapeutic effects. By exploiting these features, brusatol/silica@MnO2/Ce6@PDA-PEG-FA exhibited excellent antitumor efficacy with enhanced PDT and PTT both in in vitro and in vivo studies. Overall, our work highlights a promising strategy against hypoxia- and hyperthermia-associated resistance in phototherapy via suppressing stress-defense system and inducing ferroptosis.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2/metabolismo , Nanoestruturas/química , Fototerapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/farmacologia , Clorofilídeos/uso terapêutico , Ferroptose/efeitos dos fármacos , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Humanos , Hipertermia Induzida , Indóis/química , Raios Infravermelhos , Compostos de Manganês/química , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Óxidos/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polietilenoglicóis/química , Polímeros/química , Quassinas/química , Dióxido de Silício/química
16.
Comput Struct Biotechnol J ; 19: 3437-3450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194669

RESUMO

Pancreatic cancer remains one of the cancers with the poorest prognosis bearing an overall 5-year survival rate of about 5%. Efficient new chemotherapic drugs are still highly desired. Here, bruceine A, a quassinoid identified from the dried fruits of Brucea javanica (L.) Merr., displayed the most potent anti-proliferation activity against pancreatic cancer in vitro and in vivo. Phosphoproteomic analysis revealed p38α MAPK phosphorylation was involved in bruceine A's action in MIA PaCa-2 cells. Utilizing fortebio octet system and microscale thermophoresis, we found p38α MAPK had high affinity for bruceine A. Molecular docking and molecular dynamic simulations showed that bruceine A widely bound to residues (Leu171, Ala172, Met179, Thr180, Val183) in P-loop of p38α MAPK. Key determinants of bruceine A binding with P-loop of p38α MAPK were 19-C[bond, double bond]O, 22-CH3, 32-CH3, and 34-CH3. Taken together, our findings demonstrate that bruceine A binds directly to p38α MAPK, which can be used to probe the role of p38α MAPK phosphorylation in pancreatic cancer progression, and as a novel lead compound for pancreatic cancer therapy.

17.
Sci Transl Med ; 13(600)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193614

RESUMO

Glioblastoma (GBM), a lethal primary brain tumor, contains glioma stem cells (GSCs) that promote malignant progression and therapeutic resistance. SOX2 is a core transcription factor that maintains the properties of stem cells, including GSCs, but mechanisms associated with posttranslational SOX2 regulation in GSCs remain elusive. Here, we report that DNA-dependent protein kinase (DNA-PK) governs SOX2 stability through phosphorylation, resulting in GSC maintenance. Mass spectrometric analyses of SOX2-binding proteins showed that DNA-PK interacted with SOX2 in GSCs. The DNA-PK catalytic subunit (DNA-PKcs) was preferentially expressed in GSCs compared to matched non-stem cell tumor cells (NSTCs) isolated from patient-derived GBM xenografts. DNA-PKcs phosphorylated human SOX2 at S251, which stabilized SOX2 by preventing WWP2-mediated ubiquitination, thus promoting GSC maintenance. We then demonstrated that when the nuclear DNA of GSCs either in vitro or in GBM xenografts in mice was damaged by irradiation or treatment with etoposide, the DNA-PK complex dissociated from SOX2, which then interacted with WWP2, leading to SOX2 degradation and GSC differentiation. These results suggest that DNA-PKcs-mediated phosphorylation of S251 was critical for SOX2 stabilization and GSC maintenance. Pharmacological inhibition of DNA-PKcs with the DNA-PKcs inhibitor NU7441 reduced GSC tumorsphere formation in vitro and impaired growth of intracranial human GBM xenografts in mice as well as sensitized the GBM xenografts to radiotherapy. Our findings suggest that DNA-PK maintains GSCs in a stem cell state and that DNA damage triggers GSC differentiation through precise regulation of SOX2 stability, highlighting that DNA-PKcs has potential as a therapeutic target in glioblastoma.


Assuntos
Neoplasias Encefálicas/radioterapia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Glioblastoma/radioterapia , Glioma/radioterapia , Animais , Neoplasias Encefálicas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Camundongos , Células-Tronco Neoplásicas , Fatores de Transcrição SOXB1
18.
Commun Biol ; 4(1): 549, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972672

RESUMO

By a pilot trial on investigating immunomodulatory activity and target of ginsenosides, the major bioactive components of ginseng, here we report that structural analogues in herbal medicines hit a shared target to achieve cumulative bioactivity. A ginsenoside analogues combination with definite immunomodulatory activity in vivo was designed by integrating pharmacodynamics, serum pharmacochemistry and pharmacokinetics approaches. The cumulative bioactivity of the ginsenoside analogues was validated on LPS/ATP-induced RAW264.7 macrophages. The potentially shared target NLRP3 involved in this immunomodulatory activity was predicted by systems pharmacology. The steady binding affinity between each ginsenoside and NLRP3 was defined by molecular docking and bio-layer interferometry assay. The activation of NLRP3 inflammasomes in LPS/ATP-induced RAW264.7 was significantly suppressed by the combination, but not by any individual, and the overexpression of NLRP3 counteracted the immunomodulatory activity of the combination. All these results demonstrate that the ginsenoside analogues jointly hit NLRP3 to achieve cumulative immunomodulatory activity.


Assuntos
Ginsenosídeos/química , Ginsenosídeos/farmacologia , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Panax/química , Fitoterapia , Animais , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
19.
Pharmacol Res ; 169: 105658, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992797

RESUMO

Pancreatic cancer is one of the most aggressive cancers with a poor prognosis and 5-year low survival rate. In the present study, we report that bruceine A, a quassinoid found in Brucea javanica (L.) Merr. has a strong antitumor activity against human pancreatic cancer cells both in vitro and in vivo. Human proteome microarray reveals that 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is the candidate target of bruceine A and both fluorescence measurement and microscale thermophoresis suggest bruceine A binds to PFKFB4. Bruceine A suppresses glycolysis by inhibiting PFKFB4, leading to cell cycle arrest and apoptosis in MIA PaCa-2 cells. Furthermore, glycogen synthase kinase-3 ß (GSK3ß) is identified as a downstream target of PFKFB4 and an PFKFB4-interacting protein. Moreover, bruceine A induces cell growth inhibition and apoptosis through GSK3ß, which is dysregulated in pancreatic cancer and closely related to the prognosis. In all, these findings suggest that bruceine A inhibits human pancreatic cancer cell growth via PFKFB4/GSK3ß-mediated glycolysis, and it may serve as a potent agent for curing human pancreatic cancer.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Fosfofrutoquinase-2/metabolismo , Quassinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Reação em Cadeia da Polimerase , Quassinas/farmacologia
20.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833050

RESUMO

Assessment of programmed cell death-ligand 1 (PD-L1) expression by immunohistochemistry (IHC) is the definite diagnostic test to guide treatment for patients with advanced-stage non-small cell lung cancer. Intratumoral heterogeneity and discrepancy of PD-L1 expression between primary and metastatic lesions may increase the risk of tumor misclassification. We performed a retrospective study of the Foundation Medicine, Inc clinical database on lung cancer cases that were evaluated for PD-L1 expression by IHC in the context of routine care. All cases were assessed with the Food and Drug Administration-approved 22C3 pharmDx assay and scoring system. 15,028 lung cancer cases, including 8285 primary tumors and 6743 unmatched metastatic lesions were analyzed. Metastatic lesions (mets) were more frequently high positive (tumor proportion score (TPS) ≥50%) for PD-L1 expression than primary lesions (33.8% vs 28.4%; OR, 1.28; 95% CI, 1.19 to 1.37; p<0.001). Higher levels in mets than primaries were seen in samples from lymph nodes, pleural fluid, soft tissue and adrenal gland but not in those from liver, brain and bone. Metastatic lesions of patients with non-squamous histology were more likely to have TPS ≥50% in comparison with primary (OR, 1.37; 95% CI, 1.27 to 1.49; p<0.001), but this was not the case for patients with squamous histology (OR, 0.89; 95% CI, 0.74 to 1.06; p=0.197). PD-L1 expression varies with respect to histologic subtype, sampling site and gender, but is generally higher in metastatic sites. This observation may affect future patient management and trial design.


Assuntos
Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA