Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem Pharmacol ; 216: 115796, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690572

RESUMO

Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease characterized by T cell infiltration at the connective tissue-epithelium interface. Traditionally, topical corticosteroids are used as the first-line drugs to treat OLP. However, long-term use of corticosteroids may lead to drug tolerance, secondary candidiasis, and autoimmune adrenal insufficiency. Although topical tacrolimus has often been recommended for short-term use in corticosteroid-refractory OLP, the precise role of tacrolimus in epithelial cells remains elusive. This study showed that tacrolimus could directly upregulate the expression of IL-37 in human gingival epithelial cells by promoting the TGF-ßRI/Smad3 pathway independently of calcineurin inhibition and MAPKs. In contrast, dexamethasone, one of the corticosteroids, did not have the same effect. Moreover, IL-37 could inhibit the proliferation of activated T cells and the secretion of effector cytokines and alleviate epithelial cell apoptosis and death caused by activated T cells ina co-culturesystem. Furthermore, compared with healthy controls, IL-37 and p-Smad3 levels significantly increased in the oral mucosa affected by OLP, especially in the epithelium. IL-37 might have mediated a negative feedback mechanism to curb excessive inflammation in OLP. However, the expression of IL-37 was not associated with the infiltration of CD8+ T cells and Tregs in OLP, implying that IL-37 might mostly affect T cell activation rather than T cell differentiation and migration. Overall, this study discovered a potential novel mechanism by which tacrolimus might indirectly inhibit T cell-mediated immune damage by upregulating IL-37 in human gingival epithelial cells.


Assuntos
Líquen Plano Bucal , Tacrolimo , Humanos , Corticosteroides/uso terapêutico , Linfócitos T CD8-Positivos , Células Epiteliais/metabolismo , Líquen Plano Bucal/tratamento farmacológico , Líquen Plano Bucal/metabolismo , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Regulação para Cima
2.
Biochem Pharmacol ; 216: 115767, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634599

RESUMO

Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Glutamina , Líquen Plano Bucal , Humanos , Alanina , Diferenciação Celular , Cisteína , Proteína 1 de Resposta de Crescimento Precoce , Glutamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
3.
J Exp Clin Cancer Res ; 42(1): 162, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420300

RESUMO

BACKGROUND: A growing body of research has revealed the connection of metabolism reprogramming and tumor progression, yet how metabolism reprogramming affects inter-patient heterogeneity and prognosis in head and neck squamous cell carcinoma (HNSCC) still requires further explorations. METHODS: A cellular hierarchy framework based on metabolic properties discrepancy, METArisk, was introduced to re-analyze the cellular composition from bulk transcriptomes of 486 patients through deconvolution utilizing single-cell reference profiles from 25 primary and 8 metastatic HNSCC sample integration of previous studies. Machine learning methods were used to identify the correlations between metabolism-related biomarkers and prognosis. The functions of the genes screened out in tumor progression, metastasis and chemotherapy resistance were validated in vitro by cellular functional experiments and in vivo by xenograft tumor mouse model. RESULTS: Incorporating the cellular hierarchy composition and clinical properties, the METArisk phenotype divided multi-patient cohort into two classes, wherein poor prognosis of METArisk-high subgroup was associated with a particular cluster of malignant cells with significant activity of metabolism reprogramming enriched in metastatic single-cell samples. Subsequent analysis targeted for phenotype differences between the METArisk subgroups identified PYGL as a key metabolism-related biomarker that enhances malignancy and chemotherapy resistance by GSH/ROS/p53 pathway, leading to poor prognosis of HNSCC. CONCLUSION: PYGL was identified as a metabolism-related oncogenic biomarker that promotes HNSCC progression, metastasis and chemotherapy resistance though GSH/ROS/p53 pathway. Our study revealed the cellular hierarchy composition of HNSCC from the cell metabolism reprogramming perspective and may provide new inspirations and therapeutic targets for HNSCC in the future.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica
4.
Int Immunopharmacol ; 119: 110216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116342

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a chronic inflammatory disease characterized by T cell infiltration at lesion sites. T cell migration is greatly facilitated by chemokines produced by epithelial cells. Studies have noted the potential role of glutamine uptake in OLP and other inflammatory diseases. Here, we investigated the effect of altered glutamine uptake of epithelial cells on T cell infiltration and its underlying mechanisms in OLP. METHODS: Immunohistochemistry was used to identify the expressions of glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) and C-C motif chemokine ligand 5 (CCL5) in oral tissues of OLP and healthy controls. Human gingival epithelial cells (HGECs) were treated with glutamine deprivation and ASCT2 inhibiter GPNA respectively to detect the expressions of CCL5 and its related signaling molecules. Additionally, we had determined the impact of epithelial cell-derived CCL5 on T-cell migration using a co-culture system in vitro. RESULTS: ASCT2 and CCL5 expressions in OLP were significantly higher than healthy controls and positively correlated with the density of inflammatory infiltrations. Glutamine supplement significantly increased CCL5 production in HGECs, which was effectively inhibited by GPNA. Besides, glutamine could inhibit reactive oxygen species (ROS) production to activate the signal transducer and activator of transcription 3 (STAT3) causing higher expression level of CCL5 in HGECs. Simultaneously, T cell migration could be blocked by anti-CCL5 neutralizing antibody and STAT3 inhibitor stattic in the co-culture system. CONCLUSION: The upregulated ASCT2-mediated glutamine uptake in epithelial cells promotes CCL5 production via ROS-STAT3 signaling, which boosts the T-cell infiltration in OLP lesion.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Líquen Plano Bucal , Linfócitos T , Humanos , Células Epiteliais/metabolismo , Glutamina/metabolismo , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Quimiocina CCL5/metabolismo
5.
PeerJ ; 11: e14824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36811004

RESUMO

Oral squamous cell carcinoma (OSCC) is the 11th most prevalent tumor worldwide. Despite advantages of therapeutic approaches, the 5-year survival rate of patients with OSCC is less than 50%. It is urgent to elucidate mechanisms underlying OSCC progression for developing novel treatment strategies. Our recent study has revealed that Keratin 4 (KRT4) suppresses OSCC development, which is downregulated in OSCC. Nevertheless, the mechanism downregulating KRT4 in OSCC remains unknown. In this study, touchdown PCR was utilized to detect KRT4 pre-mRNA splicing, while m6A RNA methylation was identified by methylated RNA immunoprecipitation (MeRIP). Besides, RNA immunoprecipitation (RIP) was used to determine RNA-protein interaction. Herein, this study indicated that intron splicing of KRT4 pre-mRNA was suppressed in OSCC. Mechanistically, m6A methylation of exon-intron boundaries prevented intron splicing of KRT4 pre-mRNA in OSCC. Besides, m6A methylation suppressed the binding of splice factor DGCR8 microprocessor complex subunit (DGCR8) to exon-intron boundaries in KRT4 pre-mRNA to prohibit intron splicing of KRT4 pre-mRNA in OSCC. These findings revealed the mechanism downregulating KRT4 in OSCC and provided potential therapeutic targets for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Metilação , Neoplasias Bucais/genética , Precursores de RNA/metabolismo , Queratina-4/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética
6.
J Oral Pathol Med ; 52(2): 150-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36459062

RESUMO

BACKGROUND: Although abnormal cell proliferation and apoptosis are associated with the pathogenesis of oral lichen planus (OLP), the exactly mechanism of which is not yet known. It has been reported that glutamine (Gln) can promote cell proliferation and inhibit apoptosis of various tumor cells. This study aims to evaluate the effect of Gln metabolism on the balance of proliferation and apoptosis in epithelial cells of OLP. METHODS: Thirty human OLP specimens and 11 normal controls were stained by immunohistochemistry to detect the levels of proliferation and Gln metabolism related proteins. Then, the critical role of Gln in cell proliferation and apoptosis was determined by Gln deprivation or treatment with glutaminase inhibitor (CB-839) to intervene Gln metabolism in human gingival epithelial cells. Cell proliferation was detected using CCK8, p-mTOR and p-S6 proteins were detected using Western Blot, cell apoptosis and cell cycle were detected using flow cytometry, and cell stress was detected using immunofluorescence. RESULTS: Compared with normal controls, OLP specimens showed higher levels of Ki-67 and Gln metabolism-related proteins, including Gln transporter (ASCT2), glutaminase (GLS), and pathway proteins (p-mTOR and p-S6). In vitro, Gln promoted cell proliferation and simultaneously upregulated the activity of mTOR/S6 pathway. Moreover, rapamycin, an mTOR pathway inhibitor, could effectively block the Gln-induced cell proliferation. MHY1485, an mTOR pathway agonist, could effectively reverse the decline of cell proliferation under Gln deprivation. In addition, inhibiting Gln metabolism caused the accumulation of intracellular radical oxygen species (ROS) and induced cell apoptosis. However, N-acetylcysteine reversed this state and then decreased cell apoptosis by eliminating intracellular ROS. CONCLUSION: Gln metabolism is essential to maintain the balance of proliferation and apoptosis in oral epithelial cells, and inhibition of Gln metabolism may have a beneficial effect on OLP treatment.


Assuntos
Glutamina , Líquen Plano Bucal , Humanos , Glutamina/farmacologia , Glutaminase/farmacologia , Líquen Plano Bucal/patologia , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/patologia , Proliferação de Células , Apoptose
7.
Front Genet ; 13: 1065320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437918

RESUMO

Retinoids, natural and synthetic derivatives of vitamin A, have many regulatory functions in human body, including regulating cellular proliferation, differentiation, apoptosis. Moreover, retinoids have been used successfully for the treatment of certain malignancies, especially acute promyelocytic leukemia (APL) in adults and neuroblastoma in children. However, retinoids have not yet been translated into effective systemic treatments for most solid cancers. Some recent studies have shown that retinoids promote tumorigenesis. Therefore, we performed this meta-analysis to systematically evaluate the efficacy of retinoids in the chemoprevention and treatment of cancers. We performed literature search of several electronic databases, including PubMed, Embase and Cochrane Library from 2000 January to 2021 November. Various outcomes were applied to investigate the potential of retinoids for prevention and treatment of cancers. The primary outcomes in this study were disease recurrence and clinical response. The secondary outcomes included overall survival (OS), cancer development, disease progression and event-free survival. We identified 39 randomized controlled trials with 15,627 patients in this study. Our results showed that lower recurrence rate and better clinical response were obtained in retinoids treated patients with cancer or premalignancy as compared with control. The differences were statistically significant (RR = 0.85, 95% CI = 0.74-0.96, p = 0.01; RR = 1.24, 95% CI = 1.03-1.49, p = 0.02, respectively). Retinoids treatment was not associated with improvement in overall survival, cancer development, disease progression or event-free survival. Subgroup analysis conducted based on cancer type showed that patients benefited from retinoids treatment in APL, renal cell carcinoma, hepatocellular carcinoma, lung cancer, Kaposi sarcoma, and complete hydatidiform mole. No significant therapeutic effect was noted in head and neck cancer, acute myeloid leukemia (AML), melanoma, breast cancer, bladder cancer, cervical intraepithelial neoplasia (CIN) or cervical carcinoma. Subgroup analysis based on tumor classification demonstrated that retinoids group obtained a lower recurrence rate and better clinical response than control group in solid cancers. In conclusion, clinical application of retinoids was associated with reduction in disease recurrence and improvement in clinical response, illustrating that retinoids play a key role in cancer prevention and therapy. Further research is needed to broaden the utility of retinoids in other types of cancers. Systematic Review Registration: PROSPERO, identifier CRD42022296706.

8.
World J Stem Cells ; 14(2): 146-162, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35432735

RESUMO

Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.

9.
Cell Death Dis ; 13(2): 158, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177591

RESUMO

For head and neck squamous cell carcinoma (HNSCC), the local invasion and distant metastasis represent the predominant causes of mortality. Targeted inhibition of chemokines and their receptors is an ongoing antitumor strategy established on the crucial roles of chemokines in cancer invasion and metastasis. Herein, we showed that C-C motif chemokine ligand 2 (CCL2)- C-C motif chemokine receptor 4 (CCR4) signaling, but not the CCL2- C-C motif chemokine receptor 2 (CCR2) axis, induces the formation of the vav guanine nucleotide exchange factor 2 (Vav2)- Rac family small GTPase 1 (Rac1) complex to activate the phosphorylation of myosin light chain (MLC), which is involved in the regulation of cell motility and cancer metastasis. We identified that targeting CCR4 could effectively interrupt the activation of HNSCC invasion and metastasis induced by CCL2 without the promoting cancer relapse observed during the subsequent withdrawal period. All current findings suggested that CCL2-CCR4-Vav2-Rac1-p-MLC signaling plays an essential role in cell migration and cancer metastasis of HNSCC, and CCR4 may serve as a new potential molecular target for HNSCC therapy.


Assuntos
Quimiocina CCL2 , Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Receptores CCR4 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL2/genética , Fatores de Troca do Nucleotídeo Guanina , Neoplasias de Cabeça e Pescoço/genética , Humanos , Receptores CCR4/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
10.
Cell Death Dis ; 12(10): 946, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650054

RESUMO

Although obesity has been associated with an increased risk and aggressiveness of many types of carcinoma, whether it promotes squamous cell carcinoma remains unclear. To reveal the role of obesity in oral squamous cell carcinoma (OSCC) initiation and development, we used 4NQO-induced OSCC model mice to examine the impact of dietary obesity on carcinogenesis. The results showed that high-fat diet (HFD)-induced obesity significantly promoted the incidence of OSCC and altered the local immune microenvironment with the expansion of CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs). The underlying mechanism that induced an immunosuppressive local microenvironment in obesity was the recruitment of MDSCs through the CCL9/CCR1 axis and enhancement of MDSC immunosuppressive function via intracellular fatty acid uptake. Furthermore, clinical samples verified the increase in infiltrated CD33+ (a marker of human MDSCs) cells in obese OSCC patients, and data from the TCGA dataset confirmed that CD33 expression was positively correlated with local adipocytes in OSCC. Survival analysis showed that enrichment of adipocytes and high expression of CD33 were associated with poor prognosis in OSCC patients. Strikingly, depletion of MDSCs significantly ameliorated HFD-promoted carcinogenesis in 4NQO-induced model mice. These findings indicate that obesity is also an important risk factor for OSCC, and cancer immunotherapy, especially targeting MDSCs, may exhibit greater antitumor efficacy in obese patients.


Assuntos
Carcinogênese/patologia , Neoplasias Bucais/etiologia , Neoplasias Bucais/patologia , Células Supressoras Mieloides/patologia , Obesidade/complicações , 4-Nitroquinolina-1-Óxido , Adipócitos/metabolismo , Animais , Antígenos Ly , Antígeno CD11b/metabolismo , Quimiocinas CC , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Proteínas Inflamatórias de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Quinolonas , Receptores CCR1/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Análise de Sobrevida , Língua/metabolismo , Língua/patologia , Microambiente Tumoral/efeitos dos fármacos
11.
Front Immunol ; 12: 696605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248996

RESUMO

IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.


Assuntos
Doenças Autoimunes/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Neoplasias/metabolismo , Imunidade Adaptativa , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Autoimunidade , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1/genética , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais , Microambiente Tumoral/imunologia
12.
Int J Cancer ; 148(7): 1548-1561, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091960

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Fatores de Transcrição/genética
13.
Neoplasia ; 22(11): 617-629, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33045527

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is an important type II arginine methyltransferase that can play roles in cancers in a highly tissue-specific manner, but its role in the carcinogenesis and metastasis of head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, we detected PRMT5 expression in HNSCC tissues and performed series of in vivo and in vitro assays to investigate the function and mechanism of PRMT5 in HNSCC. We found that PRMT5 was overexpressed in dysplastic and cancer tissues, and associated with lymph node metastasis and worse patient survival. PRMT5 knockdown repressed the malignant phenotype of HNSCC cells in vitro and in vivo. PRMT5 specific inhibitor blocked the formation of precancerous lesion and HNSCC in 4NQO-induced tongue carcinogenesis model, prevented lymph node metastasis in tongue orthotopic xenograft model and inhibited cancer development in subcutaneous xenograft model and Patient-Derived tumor Xenograft (PDX) model. Mechanistically, PRMT5-catalyzed H3R2me2s promotes the enrichment of H3K4me3 in the Twist1 promoter region by recruiting WDR5, and subsequently activates the transcription of Twist1. The rescue experiments indicated that overexpressed Twist1 abrogated the inhibition of cell invasion induced by PRMT5 inhibitor. In summary, this study elucidates that PRMT5 inhibition could reduce H3K4me3-mediated Twist1 transcription and retard the carcinogenesis and metastasis of HNSCC.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , tRNA Metiltransferases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Med ; 9(10): 3489-3499, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162845

RESUMO

BACKGROUND: Alanine-serine-cysteine transporter 2 (ASCT2), a major glutamine transporter, is essential for cell growth and tumor development in a variety of cancers. However, the clinicopathological significance and pathological role of ASCT2 in OSCC (oral squamous cell carcinoma) lesions remain unclear. METHODS: Sections from 89 OSCC patients and 10 paracancerous tissue controls were stained by immunohistochemistry (IHC) to detect the expression of ASCT2, glutaminase, and Ki-67. Survival analysis was carried out to determine the predictive value of ASCT2 expression using the log-rank test. Moreover, the critical role of ASCT2 in tumor growth was determined by a series of in vitro and in vivo assays. Cell Counting Kit-8 (CCK8), Western Blotting (WB), Reactive Oxygen Species (ROS), and Glutathione (GSH) detection were applied to explore the molecular mechanism of ASCT2 involvement in tumor development. RESULTS: In OSCC lesions, ASCT2 expression was significantly increased and associated with cell proliferation index (Ki-67) and GLS expression. Moreover, survival analysis showed that OSCC patients with high ASCT2 expression had lower overall survival (P = 0.0365). In OSCC cell lines, the high level of ASCT2 was inherent and related to the glutamine addiction of tumor cells. In vitro and in vivo functional experiments revealed that targeted silencing of ASCT2 can effectively inhibit OSCC cell proliferation and tumor growth. Mechanistically, targeting ASCT2 knockdown reduced glutamine uptake and intracellular GSH levels, which contribute to the accumulation of ROS and induce apoptosis in OSCC cells. CONCLUSION: ASCT2 is a significant factor for predicting overall survival in patients with OSCC, and targeting ASCT2 to inhibit glutamine metabolism may be a promising strategy for OSCC treatment.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Proliferação de Células/genética , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Idoso , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Glutaminase/metabolismo , Glutationa/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias Bucais/metabolismo , Transplante de Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
15.
J Oral Pathol Med ; 48(6): 477-482, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077446

RESUMO

BACKGROUND: Although a few studies suggested that the chemokine CCL2 might be involved in the development of oral squamous cell carcinoma (OSCC), the exact mechanism remains unclear. In this study, we aimed to determine the resource of CCL2 in lesions and explored a potential mechanism that CCL2 promotes tumor progression. The study was an effort to provide new insights into the pathological role of CCL2 in OSCC. METHODS: Specimens of OSCC and normal oral mucosa were stained using immunohistochemistry (IHC) to assess the CCL2 expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect the difference of CCL2 between OSCC and normal oral mucosa cell lines. In addition, we treated OSCC cells with exogenous rCCL2 combined with or without CCL2 neutralizing antibody and then determined the changes of in epithelial-mesenchymal transition (EMT) markers and cell migration capacity using immunofluorescence, Western blotting, transwell migration, and wound healing assays. RESULTS: We have found that CCL2 expression was upregulated significantly in both lesions and cell culture supernatant of OSCC compared with controls. IHC staining demonstrated that CCL2 expression was primarily located in the cytoplasm and cell membrane of cells. We have also found that rCCL2 could effectively induce EMT through upregulating Snail in OSCC cells, which was demonstrated by the decrease of E-cadherin and the increase of vimentin. In addition, we have found that CCL2 neutralizing antibody could block EMT induced by CCL2 in OSCC. CONCLUSIONS: CCL2 secreted by cancer cells can promote cell migration by inducing EMT via paracrine or autocrine in OSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Quimiocina CCL2/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Bucais/patologia , Antígenos CD , Caderinas , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Neoplasias Bucais/metabolismo
16.
Cancer Lett ; 454: 108-119, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30981761

RESUMO

Treatment of oral squamous cell carcinoma (OSCC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. Here, we showed that combined 4SC-202 (a novel selective class I HDAC inhibitor) and INK128 (a selective mTORC1/C2 inhibitor) treatment exhibited synergistic effects on inhibiting cell growth, sphere-forming ability, subcutaneous tumor formation and ALDH1+ cancer stem cells (CSCs) in OSCC. The initiation of OSCC was significantly inhibited by combined treatment in 4NQO-induced rat model. In addition, upregulated SOX2 was associated with advanced and metastatic tumors in OSCC patients and was responsible for the drug-resistance property of OSCC cells. The inhibitory effect of combined treatment on cell viability and ALDH1+ CSCs were attenuated by SOX2 verexpression. Furthermore, combined treatment can effectively overcome chemoresistance and inhibit the growth of recurrent OSCC in vitro and in vivo. Mechanistically, 4SC-202 and INK128 repressed SOX2 expression through miR-429/miR-1181-mediated mRNA degradation and preventing cap-dependent mRNA translation, respectively. These results suggest that combined class I histone deacetylase and mTORC1/C2 inhibition suppresses the carcinogenesis and recurrence of OSCC by repressing SOX2.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Neoplasias Bucais/tratamento farmacológico , Fatores de Transcrição SOXB1/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Benzoxazóis/administração & dosagem , Benzoxazóis/farmacologia , Carcinogênese , Sinergismo Farmacológico , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Distribuição Aleatória , Ratos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Lett ; 434: 172-183, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30026052

RESUMO

The dysregulation of glycolysis has been suggested to lead to alteration of cell drug resistance signals, proliferation and metastasis. Emerging evidence indicates that lncRNAs play a key role in the cellular processes of tumor cells, including glycolysis, growth, and movement. However, the role and potential mechanism of lncRNAs in glycolysis-mediated metastasis has not been explored. In this study, we identified a novel lncRNA lnc-p23154 which is associated with OSCC patient metastasis and the promotion of OSCC cell migration and invasion in vitro and in vivo. Furthermore, we found that lnc-p23154 also participates in OSCC glycolysis by facilitating Glut1 expression. Rescue of lnc-p23154 reversed the suppression of OSCC cell migration and invasion induced by Glut1 knockdown. In addition, lnc-p23154 is mainly located in the nucleus and binds to the promoter region of miR-378a-3p, which represses Glut1 expression by targeting to its 3'UTR directly. Therefore, we concluded that lnc-p23154 may play an important role in Glut1-mediated glycolysis by inhibiting miR-378a-3p transcription and accelerate OSCC metastasis.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Glicólise/genética , Neoplasias Bucais/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Transportador de Glucose Tipo 1/metabolismo , Células HEK293 , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica , Metástase Neoplásica
18.
J Oral Pathol Med ; 47(2): 166-172, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29057516

RESUMO

BACKGROUND: We recently reported that the CC chemokine ligand 2 (CCL2)-CC receptor 2 (CCR2) axis was involved in the pathogenesis of oral lichen planus (OLP). However, the exact mechanism for the high expression of CCL2 in OLP specimens is not clear. Therefore, this study was designed to investigate the potential role of the toll-like receptor 4 (TLR-4) pathway in overproduction of CCL2 in OLP lesions. METHODS: Immunohistochemical staining and real-time RT-PCR were used to detect TLR-4, CCL2, and CCR2 expression in OLP lesions. Then, gingival epithelial cells from OLP lesions were established and treated with Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). CCL2 expression in epithelial cells was determined by Western blotting and real-time RT-PCR. In some experiments, TAK-242, a specific inhibitor of TLR-4, was used to block the TLR-4 pathway before cells were stimulated with LPS. RESULTS: We found that TLR-4 was significantly increased in the epithelium of OLP specimens, compared with controls. Moreover, LPS can induce the over production of CCL2 in epithelial cells of OLP, in vitro. TAK-242 effectively eliminated the increase in CCL2 expression induced by LPS by blocking the TLR-4/NF-κB pathway. In addition, we again confirmed that expression of CCL2 and CCR2 was increased in OLP specimens. CONCLUSION: Increased TLR-4 expression contributes to the upregulated expression of CCL2 in the epithelium of OLP lesions, which suggests that oral bacteria participate in the pathogenesis of OLP via the TLR-4 pathway.


Assuntos
Quimiocina CCL2/biossíntese , Líquen Plano Bucal/metabolismo , Líquen Plano Bucal/patologia , Ligantes , Lipopolissacarídeos/farmacologia , Porphyromonas gingivalis/metabolismo , Receptor 4 Toll-Like/metabolismo , Adolescente , Adulto , Técnicas de Cultura de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Gengiva/metabolismo , Humanos , Imuno-Histoquímica , Queratinócitos/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Receptores CCR2 , Sulfonamidas/metabolismo , Regulação para Cima , Adulto Jovem
19.
Cancer Lett ; 408: 33-42, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823958

RESUMO

In this study, we expanded our recent work showing that ASCT2, a Na+-dependent neutral amino acid transporter that plays a major role in glutamine uptake in cancer cells, is physically associated with EGFR in human head and neck squamous cell carcinoma cells and in several other types of cancer cells. We found in our current study that ASCT2 can be downregulated by cetuximab, an approved anti-EGFR therapeutic antibody, via cetuximab-induced EGFR endocytosis independently of cetuximab-mediated inhibition of EGFR tyrosine kinase. We further found that ASCT2-EGFR association involves the adaptor-related protein complex 1 gamma 1 subunit (AP1G1), a subunit of clathrin-associated adaptor protein complex 1, which plays a role in membrane protein sorting in endosomes after receptor-mediated endocytosis. We found that AP1G1 is physically associated with both ASCT2 and EGFR and, together with those molecules, forms a heterotrimeric molecular complex. Knockdown of AP1G1 lowered the level of ASCT2-EGFR association, inhibited cetuximab-mediated internalization of ASCT2-EGFR complex, and decreased intracellular glutamine uptake and glutathione biosynthesis. These findings suggest a new therapeutic strategy to overcome cetuximab resistance in cancer cells through combination of cetuximab, which co-targets ASCT2 along with EGFR, with an ROS-inducing agent.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/patologia , Espécies Reativas de Oxigênio/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/genética , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Células Tumorais Cultivadas
20.
Cancer Sci ; 108(8): 1584-1593, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28574664

RESUMO

Chemokine (CC motif) ligand 18 (CCL18) is involved in remodeling of the tumor microenvironment and plays critical roles in oncogenesis, invasiveness, and metastasis. We previously investigated the overexpression of CCL18 in primary oral squamous cell carcinoma (OSCC) tissues and its association with advanced clinical stage in OSCC patients. However, the underlying mechanisms of this CCL18-derived activity remains unidentified. This study showed exogenous CCL18 increased cell migration and invasion and induced cell epithelial-mesenchymal transition (EMT), and that E-cadherin, an epithelial marker, decreased and N-cadherin, a mesenchymal marker, increased, compared to negative control in OSCC cells. Furthermore, we detected that CCL18 induced the acquisition of cancer stem(-like) cell characteristics in oral cancer cells, but also found a significantly positive correlation between the expression of CCL18 and Bmi-1 (P < 0.001) in OSCC surgical specimens by immunohistochemistry analysis. The expression of octamer-binding transcription factor 4 and Bmi-1 were significantly upregulated, and proportions of aldehyde dehydrogenasehigh+ cells and CD133+ cells were markedly increased in CCL18-treated cells compared to untreated cells. Sphere formation ability was observably enhanced when cells were continually exposed to high levels of CCL18. Moreover, CCL18 upregulated Slug expression by stimulating the mammalian target of rapamycin (mTOR) signaling pathway in OSCC cell lines. Inhibition of the mTOR pathway by INK128, or Slug knockdown by RNA interference, reversed CCL18-induced EMT and the stemness response at both molecular and functional levels. In conclusion, our data suggested that CCL18 upregulated Slug expression to promote EMT and stem cell-like features by activating the mTOR pathway in oral cancer. These findings provide new potential targets for the early diagnosis and treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Quimiocinas CC/genética , Neoplasias Bucais/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Idoso , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CC/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Invasividade Neoplásica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA