Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371051

RESUMO

BACKGROUND: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS: By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS: These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.


Assuntos
Caspases , Cristalino , Humanos , Caspases/metabolismo , Membrana Celular/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Cristalino/metabolismo , Membranas/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 981564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157463

RESUMO

Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17ß-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.


Assuntos
Lymnaea , Receptores de Progesterona , Animais , Estradiol , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Lymnaea/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Reprodução/fisiologia , Caramujos/metabolismo , Esteroides , Testosterona/metabolismo , Vertebrados/metabolismo , Água/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163464

RESUMO

Novel compounds significantly interfering with the mitochondrial energy production may have therapeutic value in triple-negative breast cancer (TNBC). This criterion is clearly fulfilled by desethylamiodarone (DEA), which is a major metabolite of amiodarone, a widely used antiarrhythmic drug, since the DEA previously demonstrated anti-neoplastic, anti-metastasizing, and direct mitochondrial effects in B16F10 melanoma cells. Additionally, the more than fifty years of clinical experience with amiodarone should answer most of the safety concerns about DEA. Accordingly, in the present study, we investigated DEA's potential in TNBC by using a TN and a hormone receptor positive (HR+) BC cell line. DEA reduced the viability, colony formation, and invasive growth of the 4T1 cell line and led to a higher extent of the MCF-7 cell line. It lowered mitochondrial transmembrane potential and induced mitochondrial fragmentation. On the other hand, DEA failed to significantly affect various parameters of the cellular energy metabolism as determined by a Seahorse live cell respirometer. Cyclooxygenase 2 (COX-2), which was upregulated by DEA in the TNBC cell line only, accounted for most of 4T1's DEA resistance, which was counteracted by the selective COX-2 inhibitor celecoxib. All these data indicate that DEA may have potentiality in the therapy of TNBC.


Assuntos
Amiodarona/análogos & derivados , Antineoplásicos/farmacologia , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Amiodarona/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
4.
PLoS One ; 15(9): e0239088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32977329

RESUMO

Previously, we demonstrated the in vitro anti-tumor effects of desethylamiodarone (DEA) in bladder and cervix cancer cell lines. In the present study, we intended to establish its potentiality in B16-F10 metastatic melanoma cells in vitro and in vivo. We assessed cell proliferation, apoptosis and cell cycle by using sulforhodamine B assay, Muse™ Annexin V & Dead Cell and Muse® Cell Cycle assays, respectively. We determined colony formation after crystal violet staining. For studying mechanistic aspects, immunoblotting analysis was performed. We used a C57BL/6 experimental lung metastasis model for demonstrating in vivo anti-metastatic potential of DEA. DEA inhibited in vitro proliferation and colony formation, and in vivo lung metastasizing properties of B16-F10 cells. It arrested the cells in G0/G1 phase of their cycle likely via p21 in a p53-dependent fashion, and induced caspase mediated apoptosis likely via inversely regulating Bcl-2 and Bax levels, and reducing Akt and ERK1/2 activation. In this study, we provided in vitro and in vivo experimental evidences for DEA's potentiality in the therapy of metastatic melanomas. Since DEA is the major metabolite of amiodarone, a worldwide used antiarrhythmic drug, safety concerns could be resolved more easily for it than for a novel pharmacological agent.


Assuntos
Amiodarona/análogos & derivados , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Amiodarona/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/patologia
5.
Exp Eye Res ; 185: 107585, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30790544

RESUMO

BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434-440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.


Assuntos
Aquaporinas/metabolismo , Água Corporal/metabolismo , Cálcio/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Western Blotting , Caspases/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Cristalino/citologia , Células MCF-7/metabolismo , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Dados de Sequência Molecular , Miristatos/metabolismo , Oócitos , Domínios Proteicos , Transfecção , Xenopus laevis , Adulto Jovem
6.
Biochem Pharmacol ; 162: 98-108, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30296409

RESUMO

PURPOSE: The cytoprotective effect of poly(ADP-ribose) polymerase 1 (PARP1) inhibition is well documented in various cell types subjected to oxidative stress. Previously, we have demonstrated that PARP1 inhibition activates Akt, and showed that this response plays a critical role in the maintenance of mitochondrial integrity and in cell survival. However, it has not yet been defined how nuclear PARP1 signals to cytoplasmic Akt. METHODS: WRL 68, HeLa and MCF7 cells were grown in culture. Oxidative stress was induced with hydrogen peroxide. PARP was inhibited with the PARP inhibitor PJ34. ATM, mTOR- and NEMO were silenced using specific siRNAs. Cell viability assays were based on the MTT assay. PARP-ATM pulldown experiments were conducted; each protein was visualized by Western blotting. Immunoprecipitation of ATM, phospho-ATM and NEMO was performed from cytoplasmic and mitochondrial cell fractions and proteins were detected by Western blotting. In some experiments, a continually active Akt construct was introduced. Nuclear to cytoplasmic and mitochondrial translocation of phospho-Akt was visualized by confocal microscopy. RESULTS: Here we present evidence for a PARP1 mediated, PARylation-dependent interaction between ATM and NEMO, which is responsible for the cytoplasmic transport of phosphorylated (thus, activated) ATM kinase. In turn, the cytoplasmic p-ATM and NEMO forms complex with mTOR and Akt, yielding the phospho-ATM-NEMO-Akt-mTOR signalosome, which is responsible for the PARP-inhibition induced Akt activation. The phospho-ATM-NEMO-Akt-mTOR signalosome localizes to the mitochondria and is essential for the PARP-inhibition-mediated cytoprotective effects in oxidatively stressed cells. When the formation of the signalosome is prevented, the cytoprotective effects diminish, but cells can be rescued by constantly active Akt1, further confirming the critical role of Akt activation in cytoprotection. CONCLUSIONS: Taken together, the data presented in the current paper are consistent with the hypothesis that PARP inhibition suppresses the PARylation of ATM, which, in turn, forms an ATM-NEMO complex, which exits the nucleus, and combines in the cytosol with mTOR and Act, resulting in Act phosphorylation (i.e. activation), which, in turn, produces the cytoprotective action via the induction of Akt-mediated survival pathways. This mechanism can be important in the protective effect of PARP inhibitor in various diseases associated with oxidative stress. Moreover, disruption of the formation or action of the phospho-ATM-NEMO-Akt-mTOR signalosome may offer potential future experimental therapeutic checkpoints.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase I-kappa B/metabolismo , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Fenantrenos/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
PLoS One ; 12(12): e0189470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220397

RESUMO

Bladder cancer (BC) is a common malignancy of the urinary tract that has a higher frequency in men than in women. Cytostatic resistance and metastasis formation are significant risk factors in BC therapy; therefore, there is great interest in overcoming drug resistance and in initiating research for novel chemotherapeutic approaches. Here, we suggest that desethylamiodarone (DEA)-a metabolite of amiodarone-may have cytostatic potential. DEA activates the collapse of mitochondrial membrane potential (detected by JC-1 fluorescence), and induces cell death in T24 human transitional-cell bladder carcinoma cell line at physiologically achievable concentrations. DEA induces cell cycle arrest in the G0/G1 phase, which may contribute to the inhibition of cell proliferation, and shifts the Bax/Bcl-2 ratio to initiate apoptosis, induce AIF nuclear translocation, and activate PARP-1 cleavage and caspase-3 activation. The major cytoprotective kinases-ERK and Akt-are inhibited by DEA, which may contribute to its cell death-inducing effects. DEA also inhibits the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and reduces colony formation of T24 bladder carcinoma cells, indicating its possible inhibitory effect on metastatic potential. These data show that DEA is a novel anti-cancer candidate of multiple cell death-inducing effects and metastatic potential. Our findings recommend further evaluation of its effects in clinical studies.


Assuntos
Amiodarona/análogos & derivados , Apoptose/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia , Amiodarona/farmacologia , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
8.
Mol Cell Biochem ; 321(1-2): 155-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18975057

RESUMO

We studied cardioprotective as well as Akt and extracellular signal-activated kinase (ERK) activating effect of a Ca(2+) antagonist and a beta-adrenergic receptor blocker during ischemia-reperfusion, and compared these properties of the substances with that of a poly(ADP-ribose) polymerase (PARP) inhibitor used as a positive control throughout the experiments. Langendorff-perfused isolated rat hearts were subjected to 25 min global ischemia followed by 45 min reperfusion, and recovery of energy metabolism as well as functional cardiac parameters were monitored. Although to varying extents, all substances improved recovery of creatine phosphate, ATP, intracellular pH, and reutilization of inorganic phosphate. These favorable changes were accompanied by improved recovery of heart function parameters and reduced infarct size. In addition and again to varying extents, all studied substances decreased oxidative damage (lipid peroxidation and protein oxidation), and activated Akt, glycogen synthase kinase (GSK)-3beta, and ERK1/2. Correlation between cardioprotective and kinase activating effectivity of the compounds proved to be statistically significant. Physiological significance of these kinase activations was established by demonstrating that inhibition of Akt by LY294002 and ERK1/2 by PD98059 compromised the cardioprotective effect of all the substances studied. In conclusion, we demonstrated for the first time that activation of phosphatidylinositol-3-kinase (PI-3K)-Akt and ERK2 pathways significantly contributed to cardioprotective effects of a Ca(2+) antagonist and a beta-adrenergic receptor blocker. Furthermore, we found a strong correlation between cardioprotective and kinase-activating potencies of the substances studied (Verapamil, Metoprolol and two PARP inhibitors), which indicated the potentiality of these kinases as drug-targets in the therapy of ischemic heart disease.


Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Cardiotônicos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Benzimidazóis/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Masculino , Metoprolol/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Oxirredução , Fosfatos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia , Verapamil/metabolismo
9.
J Biol Chem ; 280(42): 35767-75, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16115861

RESUMO

According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcisteína/metabolismo , Western Blotting , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Fígado/metabolismo , Potenciais da Membrana , Microscopia de Fluorescência , Modelos Biológicos , Necrose , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
10.
Biochem Pharmacol ; 65(7): 1115-28, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12663047

RESUMO

Although, the antiarrhythmic effect of amiodarone is well characterized, its effect on post-ischemic heart and cardiomyocytes, as well as the mechanism of its toxicity on extracardiac tissues is still poorly understood. In this study, we analyzed energy metabolism in situ during ischemia-reperfusion in Langendorff-perfused heart model by measuring the high-energy phosphate metabolites using 31P NMR spectroscopy. The toxicity of amiodarone on cardiomyocytes and cell lines of extracardiac origin, as well as direct effect of the drug on mitochondrial functions in isolated mitochondria was also analyzed. Amiodarone, when was present at low concentrations and predominantly in membrane bound form, protected heart and mitochondrial energy metabolism from ischemia-reperfusion-induced damages in Langendorff-perfused heart model. Toxicity of the drug was significantly higher on hepatocytes and pancreatic cells than on cardiomyocytes. In isolated mitochondria, amiodarone did not induce reactive oxygen species formation, while it affected mitochondrial permeability transition in a concentration dependent way. Up to the concentration of 10 microM, the drug considerably inhibited Ca(2+)-induced permeability transition, while at higher concentrations it induced a cyclosporin A independent permeability transition of its own. At concentrations where it inhibited the Ca(2+)-induced permeability transition (IC(50)=3.9+/-0.8 microM), it did not affect, between 6 and 30 microM it uncoupled, while, at higher concentrations it inhibited the respiratory chain. Thus, the concentration dependent nature of amiodarone's effect on permeability transition together with the different sensitivities of the tissues toward amiodarone can be involved in the beneficial cardiac and the simultaneous toxic extracardiac effects of the drug.


Assuntos
Amiodarona/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA