Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833072

RESUMO

The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Sarcoma , Humanos , Camundongos , Animais , Coenzima A/farmacologia , Ácido Pantotênico/farmacologia , Sarcoma/tratamento farmacológico , Microambiente Tumoral
3.
Mol Nutr Food Res ; 67(22): e2300374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712099

RESUMO

SCOPE: Adipocyte-derived extracellular vesicles (AdEVs) convey lipids that can play a role in the energy homeostasis. Vitamin D (VD) has been shown to limit the metabolic inflammation as it decreases inflammatory markers expression in adipose tissue (AT). However, VD effect on adipocytes-derived EVs has never been investigated. METHODS AND RESULTS: Thus, the aim of this study is to evaluate the AdEVs lipid composition by LC-MS/MS approach in 3T3-L1 cells treated with VD or/and pro-inflammatory factor (tumor necrosis factor α [TNFα]). Among all lipid species, four are highlighted (glycerolipids, phospholipids, lysophospholipids, and sphingolipids) with a differential content between small (sEVs) and large EVs (lEVs). This study also observes that VD alone modulates EV lipid species involved in membrane fluidity and in the budding of membrane. EVs treated with VD under inflammatory conditions have different lipid profiles than the control group, which is more pronounced in lEVs. Indeed, 25 lipid species are significantly modulated in lEVs, compared with only seven lipid species in sEVs. CONCLUSIONS: This study concludes that VD, alone or under inflammatory conditions, is associated with specific lipidomic signature of sEVs and lEVs. These observations reinforce current knowledge on the anti-inflammatory effect of VD.


Assuntos
Vesículas Extracelulares , Vitamina D , Vitamina D/farmacologia , Vitamina D/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vitaminas/farmacologia , Adipócitos , Lipídeos/farmacologia
4.
Obesity (Silver Spring) ; 22(12): 2552-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236366

RESUMO

OBJECTIVE: The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype. METHODS: This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage. Food intake, meal pattern, oxygen consumption (VO2 ), and carbon dioxide production (VCO2 ) were obtained using an Oxylet Physiocage System. Gastric emptying assay and real-time RT-PCR from dorsal vagal complex extracts were also performed. C-Fos expression was used as a marker of neuronal activation. Phenotypic characterization of activated neurons was performed using either proopiomelanocortin (POMC)-Tau-Topaz GFP transgenic mice or NUCB2/nesfatin-1 and tyrosine hydroxylase (TH) labeling. RESULTS: Acute per os metformin treatment slowed down gastric emptying, reduced meal size, but not meal number in a leptin-independent manner, and transiently decreased energy expenditure in a leptin-dependent manner. Metformin specifically activated central circuitry within the brainstem, independently of vagal afferents. Finally, while POMC neurons seemed sparsely activated, we report that a high proportion of the c-Fos positive cells were nesfatinergic neurons, some of which coexpressing TH. CONCLUSIONS: Altogether, these results show that metformin modifies satiation by activating brainstem circuitry and suggest that NUCB2/nesfatin-1 could be involved in this metformin effect.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Saciação/efeitos dos fármacos , Animais , Regulação do Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Paladar/efeitos dos fármacos
5.
Glia ; 61(7): 1172-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640807

RESUMO

Synchronization of circadian rhythms to the 24-h light/dark (L/D) cycle is associated with daily rearrangements of the neuronal-glial network of the suprachiasmatic nucleus of the hypothalamus (SCN), the central master clock orchestrating biological functions in mammals. These anatomical plastic events involve neurons synthesizing vasoactive intestinal peptide (VIP), known as major integrators of photic signals in the retinorecipient region of the SCN. Using an analog-sensitive kinase allele murine model (TrkB(F616A) ), we presently show that the pharmacological blockade of the tropomyosin-related kinase receptor type B (TrkB), the high-affinity receptor of brain-derived neurotrophic factor (BDNF), abolished day/night changes in the dendrite enwrapping of VIP neurons by astrocytic processes (glial coverage), used as an index of SCN plasticity on electron-microscopic sections. Therefore, the BDNF/TrkB signaling pathway exerts a permissive role on the ultrastructural rearrangements that occur in SCN under L/D alternance, an action that could be a critical determinant of the well-established role played by BDNF in the photic regulation of the SCN. In contrast, the extent of glial coverage of non-VIP neighboring dendrites was not different at daytime and nighttime in TrkB(F616A) mice submitted to TrkB inactivation or not receiving any pharmacological treatment. These data not only show that BDNF regulates SCN structural plasticity across the 24-h cycle but also reinforce the view that the daily changes in SCN architecture subserve the light synchronization process.


Assuntos
Astrócitos/metabolismo , Astrócitos/ultraestrutura , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/citologia , Alanina/genética , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/ultraestrutura , Ritmo Circadiano/fisiologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Mutação/genética , Fenilalanina/genética , Receptor trkB/genética , Receptor trkB/ultraestrutura , Transdução de Sinais/genética , Peptídeo Intestinal Vasoativo/metabolismo
6.
Neurotoxicology ; 34: 135-49, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23164930

RESUMO

Deoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs. To this goal, we used c-Fos staining which constitutes a useful approach to identify activated neurons. We showed that per os administration of Fusarium graminearum extracts (containing the equivalent of 1mg DON per kg of body weight) induced an increase in c-Fos immunoreactivity in several central structures, including the ventrolateral medulla (VLM), dorsal vagal complex (DVC), paraventricular nucleus of the hypothalamus (PVN), arcuate nucleus (Arc), supraoptic nucleus (SON) and amygdala (CeA). Moreover, we coupled c-Fos staining with phenotypic markers detection in order to specify the neuronal populations activated during DON intoxication. This phenotypic characterization revealed the activation of catecholaminergic but not of serotoninergic neurons in response to the toxin. In this context, we also paid a particular attention to NUCB2/nesfatin-1 positive cells, since nesfatin-1 is known to exert a satiety effect. We report here, for the first time in the pig brain, the presence of NUCB2/nesfatin-1 neurons in the VLM, DVC, PVN, Arc and SON, and their activation during DON intoxication. Taken together, these data show that DON stimulates the main structures involved in food intake in pigs and suggest that catecholaminergic and NUCB2/nesfatin-1 neurons could contribute in the anorexigenic effects of the mycotoxin.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imuno-Histoquímica , Micotoxinas/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tricotecenos/toxicidade , Administração Oral , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Catecolaminas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Micotoxinas/administração & dosagem , Neurônios/metabolismo , Neurônios/patologia , Nucleobindinas , Serotonina/metabolismo , Suínos , Tricotecenos/administração & dosagem , Regulação para Cima
7.
PLoS One ; 6(10): e26134, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022538

RESUMO

Physiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food. DON has been implicated in acute and chronic illnesses in both humans and farm animals including weight loss. Here, we provide the first demonstration that DON reduced feeding behavior and modified satiation and satiety by interfering with central neuronal networks dedicated to food intake regulation. Moreover, our results strongly suggest that during intoxication, DON reaches the brain where it modifies anorexigenic balance. In view of the widespread human exposure to DON, the present results may lead to reconsider the potential consequences of chronic DON consumption on human eating disorders.


Assuntos
Anorexia/fisiopatologia , Comportamento Alimentar/efeitos dos fármacos , Contaminação de Alimentos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Tricotecenos/farmacologia , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Vértebras Cervicais/efeitos dos fármacos , Vértebras Cervicais/metabolismo , Vértebras Cervicais/cirurgia , Proteínas de Ligação a DNA/metabolismo , Escuridão , Humanos , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nucleobindinas , Fenótipo , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tricotecenos/administração & dosagem , Vagotomia
8.
Toxicol Sci ; 124(1): 179-91, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873375

RESUMO

Deoxynivalenol (DON), one of the most abundant trichothecenes found on cereals, has been implicated in mycotoxicoses in both humans and farm animals. Low-dose toxicity is characterized by reduced weight gain, diminished nutritional efficiency, and immunologic effects. The levels and patterns of human food commodity contamination justify that DON consumption constitutes a public health issue. DON stability during processing and cooking explains its large presence in human food. We characterized here DON intoxication by showing that the toxin concomitantly affects feeding behavior, body temperature, and locomotor activity after both per os and central administration. Using c-Fos expression mapping, we identified the neuronal structures activated in response to DON and observed that the pattern of neuronal populations activated by the toxin resembled those induced by inflammatory signals. By real-time PCR, we report the first evidences for a DON-induced central inflammation, attested by the strong upregulation of interleukin-1ß, interleukin-6, tumor necrosis factor-α, cyclooxygenase-2, and microsomal prostaglandin synthase-1 (mPGES-1) messenger RNA. However, silencing prostaglandins E2 signaling pathways using mPGES-1 knockout mice, which are resistant to cytokine-induced sickness behavior, did not modify the responses to the toxin. These results reveal that, despite strong similarities, behavioral changes observed after DON intoxication differ from classical sickness behavior evoked by inflammatory cytokines.


Assuntos
Encéfalo/efeitos dos fármacos , Citocinas/genética , Dinoprostona/fisiologia , Contaminação de Alimentos , Comportamento de Doença/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Anorexia/induzido quimicamente , Anorexia/genética , Anorexia/imunologia , Temperatura Corporal/efeitos dos fármacos , Encéfalo/imunologia , Citocinas/imunologia , Dinoprostona/biossíntese , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Oxirredutases Intramoleculares/genética , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Prostaglandina-E Sintases , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA