Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39182630

RESUMO

BACKGROUND: Deficiency of adenosine deaminase (ADA or ADA1) has broad clinical and genetic heterogeneity. Screening techniques can identify asymptomatic infants whose phenotype and prognosis are indeterminate, and who may carry ADA variants of unknown significance. OBJECTIVE: We systematically assessed the pathogenic potential of rare ADA missense variants to better define the relationship of genotype to red blood cell (RBC) total deoxyadenosine nucleotide (dAXP) content and to phenotype. METHODS: We expressed 46 ADA missense variants in the ADA-deficient SØ3834 strain of Escherichia coli and defined genotype categories (GCs) ranked I to IV by increasing expressed ADA activity. We assessed relationships among GC rank, RBC dAXP, and phenotype in 58 reference patients with 50 different genotypes. We used our GC ranking system to benchmark AlphaMissense for predicting variant pathogenicity, and we used a minigene assay to identify exonic splicing variants in ADA exon 9. RESULTS: The 46 missense variants expressed ∼0.001% to ∼70% of wild-type ADA activity (40% had <0.05% of wild-type ADA activity and 50% expressed >1%). RBC dAXP ranged from undetectable to >75% of total adenine nucleotides and correlated well with phenotype. Both RBC dAXP and clinical severity were inversely related to total ADA activity expressed by both inherited variants. Our GC scoring system performed better than AlphaMissense in assessing variant pathogenicity, particularly for less deleterious variants. CONCLUSION: For ADA deficiency, pathogenicity is a continuum and conditional, depending on the total ADA activity contributed by both inherited variants as indicated by GC rank. However, in patients with indeterminate phenotype identified by screening, RBC dAXP measured at diagnosis may have greater prognostic value than GC rank.

2.
Nat Med ; 30(6): 1583-1592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839899

RESUMO

Sjögren's disease (SjD) is a chronic, systemic autoimmune disease with no approved disease-modifying therapies. Dazodalibep (DAZ), a novel nonantibody fusion protein, is a CD40 ligand antagonist that blocks costimulatory signals between T and B cells and antigen-presenting cells, and therefore may suppress the wide spectrum of cellular and humoral responses that drive autoimmunity in SjD. This study was a phase 2, randomized, double-blinded, placebo (PBO)-controlled trial of DAZ with a crossover stage in two distinct populations of participants with SjD. Population 1 had moderate-to-severe systemic disease activity and population 2 had an unacceptable symptom burden and limited systemic organ involvement. All participants had a diagnosis of SjD, with 21.6% and 10.1% having an associated connective tissue disease (rheumatoid arthritis or systemic lupus erythematosus) in populations 1 and 2, respectively. The remaining participants would be considered as having primary Sjögren's syndrome. The primary endpoint for population 1 (n = 74) was the change from baseline in the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index at day 169. The primary endpoint for population 2 (n = 109) was the change from baseline in the European League Against Rheumatism Sjögren's Syndrome Patient Reported Index at day 169. The primary endpoints (least squares mean ± standard error) were achieved with statistical significance for both population 1 (DAZ, -6.3 ± 0.6; PBO, -4.1 ± 0.6; P = 0.0167) and population 2 (DAZ, -1.8 ± 0.2; PBO, -0.5 ± 0.2; P = 0.0002). DAZ was generally safe and well tolerated. Among the most frequently reported adverse events were COVID-19, diarrhea, headache, nasopharyngitis, upper respiratory tract infection, arthralgia, constipation and urinary tract infection. In summary, DAZ appears to be a potential new therapy for SjD and its efficacy implies an important role for the CD40/CD40 ligand pathway in its pathogenesis. ClinicalTrials.gov identifier: NCT04129164 .


Assuntos
Ligante de CD40 , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/tratamento farmacológico , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Método Duplo-Cego , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Resultado do Tratamento
3.
J Clin Immunol ; 44(5): 107, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676811

RESUMO

PURPOSE: Patients with adenosine deaminase 1 deficient severe combined immunodeficiency (ADA-SCID) are initially treated with enzyme replacement therapy (ERT) with polyethylene glycol-modified (PEGylated) ADA while awaiting definitive treatment with hematopoietic stem cell transplant (HSCT) or gene therapy. Beginning in 1990, ERT was performed with PEGylated bovine intestinal ADA (ADAGEN®). In 2019, a PEGylated recombinant bovine ADA (Revcovi®) replaced ADAGEN following studies in older patients previously treated with ADAGEN for many years. There are limited longitudinal data on ERT-naïve newborns treated with Revcovi. METHODS: We report our clinical experience with Revcovi as initial bridge therapy in three newly diagnosed infants with ADA-SCID, along with comprehensive biochemical and immunologic data. RESULTS: Revcovi was initiated at twice weekly dosing (0.2 mg/kg intramuscularly), and monitored by following plasma ADA activity and the concentration of total deoxyadenosine nucleotides (dAXP) in erythrocytes. All patients rapidly achieved a biochemically effective level of plasma ADA activity, and red cell dAXP were eliminated within 2-3 months. Two patients reconstituted B-cells and NK-cells within the first month of ERT, followed by naive T-cells one month later. The third patient reconstituted all lymphocyte subsets within the first month of ERT. One patient experienced declining lymphocyte counts with improvement following Revcovi dose escalation. Two patients developed early, self-resolving thrombocytosis, but no thromboembolic events occurred. CONCLUSION: Revcovi was safe and effective as initial therapy to restore immune function in these newly diagnosed infants with ADA-SCID, however, time course and degree of reconstitution varied. Revcovi dose may need to be optimized based on immune reconstitution, clinical status, and biochemical data.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia de Reposição de Enzimas , Imunodeficiência Combinada Severa , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Agamaglobulinemia/terapia , Reconstituição Imune , Proteínas Recombinantes/uso terapêutico , Imunodeficiência Combinada Severa/terapia , Resultado do Tratamento
4.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048054

RESUMO

Paget's Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget's Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Quinase 3 de Receptor Acoplado a Proteína G , Osteíte Deformante , Animais , Humanos , Camundongos , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/metabolismo , Leucócitos Mononucleares/metabolismo , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Osteogênese , Quinase 3 de Receptor Acoplado a Proteína G/genética
5.
Curr Allergy Asthma Rep ; 22(11): 141-150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36103081

RESUMO

PURPOSEOF REVIEW: The pathogenesis of eosinophilic granulomatosis with polyangiitis (eGPA) is driven largely by CD4 + type 2 helper T cells (Th2), B cells, and eosinophils. Interleukin (IL)-4 and IL-13 are critical cytokines in Th2 cell-mediated inflammation; however, inhibition of IL-4 and IL-13 does not reduce serum eosinophil counts and has even been associated with hypereosinophilia. This review explores the role of IL-4, IL-5, and IL-13 in Th2-mediated inflammation to consider the potential clinical consequences of inhibiting these individual cytokines in eGPA. RECENT FINDINGS: Treatments for eosinophilic granulomatosis with polyangiitis (eGPA) are rapidly evolving through using biologic therapies to modulate the Th2 inflammatory response via eosinophil inhibition. While IL-4, IL-5, IL-13, and IL-25 can all affect eosinophils, only IL-5 inhibition has demonstrated therapeutic benefit to-date. In this review, we report a clinical vignette of a patient with adult-onset asthma who developed severe manifestations of eGPA after switching from mepolizumab (an IL-5 inhibitor) to dupilumab (an inhibitor of IL-4 and IL-13). By understanding the role of IL-4, IL-5, and IL-13 in Th2-mediated vasculitis, we can start to understand how eGPA might respond differently to focused cytokine inhibition.


Assuntos
Síndrome de Churg-Strauss , Granulomatose com Poliangiite , Adulto , Síndrome de Churg-Strauss/complicações , Síndrome de Churg-Strauss/tratamento farmacológico , Citocinas , Granulomatose com Poliangiite/tratamento farmacológico , Humanos , Inflamação , Interleucina-13/uso terapêutico , Interleucina-4/uso terapêutico , Interleucina-5 , Células Th2
6.
J Allergy Clin Immunol ; 149(5): 1525-1560, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176351

RESUMO

Secondary hypogammaglobulinemia (SHG) is characterized by reduced immunoglobulin levels due to acquired causes of decreased antibody production or increased antibody loss. Clarification regarding whether the hypogammaglobulinemia is secondary or primary is important because this has implications for evaluation and management. Prior receipt of immunosuppressive medications and/or presence of conditions associated with SHG development, including protein loss syndromes, are histories that raise suspicion for SHG. In patients with these histories, a thorough investigation of potential etiologies of SHG reviewed in this report is needed to devise an effective treatment plan focused on removal of iatrogenic causes (eg, discontinuation of an offending drug) or treatment of the underlying condition (eg, management of nephrotic syndrome). When iatrogenic causes cannot be removed or underlying conditions cannot be reversed, therapeutic options are not clearly delineated but include heightened monitoring for clinical infections, supportive antimicrobials, and in some cases, immunoglobulin replacement therapy. This report serves to summarize the existing literature regarding immunosuppressive medications and populations (autoimmune, neurologic, hematologic/oncologic, pulmonary, posttransplant, protein-losing) associated with SHG and highlights key areas for future investigation.


Assuntos
Agamaglobulinemia , Imunodeficiência de Variável Comum , Síndromes de Imunodeficiência , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/etiologia , Agamaglobulinemia/terapia , Imunodeficiência de Variável Comum/complicações , Humanos , Doença Iatrogênica , Imunidade , Imunoglobulinas , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/terapia
7.
Stem Cell Res Ther ; 13(1): 37, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093170

RESUMO

BACKGROUND: The bone marrow niche supports hematopoietic cell development through intimate contact with multipotent stromal mesenchymal stem cells; however, the intracellular signaling, function, and regulation of such supportive niche cells are still being defined. Our study was designed to understand how G protein receptor kinase 3 (GRK3) affects bone marrow mesenchymal stem cell function by examining primary cells from GRK3-deficient mice, which we have previously published to have a hypercellular bone marrow and leukocytosis through negative regulation of CXCL12/CXCR4 signaling. METHODS: Murine GRK3-deficient bone marrow mesenchymal stromal cells were harvested and cultured to differentiate into three lineages (adipocyte, chondrocyte, and osteoblast) to confirm multipotency and compared to wild type cells. Immunoblotting, modified-TANGO experiments, and flow cytometry were used to further examine the effects of GRK3 deficiency on bone marrow mesenchymal stromal cell receptor signaling. Microcomputed tomography was used to determine trabecular and cortical bone composition of GRK3-deficient mice and standard ELISA to quantitate CXCL12 production from cellular cultures. RESULTS: GRK3-deficient, bone marrow-derived mesenchymal stem cells exhibit enhanced and earlier osteogenic differentiation in vitro. The addition of a sphingosine kinase inhibitor abrogated the osteogenic proliferation and differentiation, suggesting that sphingosine-1-phosphate receptor signaling was a putative G protein-coupled receptor regulated by GRK3. Immunoblotting showed prolonged ERK1/2 signaling after stimulation with sphingosine-1-phosphate in GRK3-deficient cells, and modified-TANGO assays suggested the involvement of ß-arrestin-2 in sphingosine-1-phosphate receptor internalization. CONCLUSIONS: Our work suggests that GRK3 regulates sphingosine-1-phosphate receptor signaling on bone marrow mesenchymal stem cells by recruiting ß-arrestin to the occupied GPCR to promote internalization, and lack of such regulation affects mesenchymal stem cell functionality.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores de Esfingosina-1-Fosfato , Microtomografia por Raio-X
8.
Stem Cells ; 39(1): 115-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166420

RESUMO

Mesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.


Assuntos
Reprogramação Celular/imunologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Monócitos/imunologia , Animais , Reprogramação Celular/genética , Xenoenxertos , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos
10.
Small ; 15(37): e1901442, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31353802

RESUMO

Herein, the use of red blood cells (RBCs) as carriers of cytoplasmically interned phototherapeutic agents is described. Photolysis promotes drug release from the RBC carrier thereby providing the means to target specific diseased sites. This strategy is realized with a vitamin B12-taxane conjugate (B12-TAX), in which the drug is linked to the vitamin via a photolabile CoC bond. The conjugate is introduced into mouse RBCs (mRBCs) via a pore-forming/pore-resealing procedure and is cytoplasmically retained due to the membrane impermeability of B12. Photolysis separates the taxane from the B12 cytoplasmic anchor, enabling the drug to exit the RBC carrier. A covalently appended Cy5 antenna sensitizes the conjugate (Cy5-B12-TAX) to far red light, thereby circumventing the intense light absorbing properties of hemoglobin (350-600 nm). Microscopy and imaging flow cytometry reveal that Cy5-B12-TAX-loaded mRBCs act as drug carriers. Furthermore, intravital imaging of mice furnish a real time assessment of circulating phototherapeutic-loaded mRBCs as well as evidence of the targeted photorelease of the taxane upon photolysis. Histopathology confirms that drug release occurs in a well resolved spatiotemporal fashion. Finally, acoustic angiography is employed to assess the consequences of taxane release at the tumor site in Nu/Nu-tumor-bearing mice.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos/citologia , Animais , Hidrocarbonetos Aromáticos com Pontes/química , Feminino , Citometria de Fluxo , Humanos , Camundongos , Fotólise , Pró-Fármacos/química , Taxoides/química , Vitamina B 12/química
11.
Mol Immunol ; 106: 12-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576947

RESUMO

Chemerin receptor (CMKLR1) is a G protein-coupled receptor (GPCR) implicated in macrophage-mediated inflammation and in several forms of human arthritis. Analogous to other GPCR, CMKLR1 is likely regulated by G protein-coupled receptor kinase (GRK) phosphorylation of intracellular domains in an activation-dependent manner, which leads to recruitment and termination of intracellular signaling via desensitization and internalization of the receptor. The ubiquitously expressed GRK family members include GRK2, GRK3, GRK5, and GRK6, but it is unknown which GRK regulates CMKLR1 cellular and signaling functions. Our data show that activation of CMKLR1 by chemerin in primary macrophages leads to signaling and functional outcomes that are regulated by GRK6 and ß-arrestin 2. We show that arrestin recruitment to CMKLR1 following chemerin stimulation is enhanced with co-expression of GRK6. Further, internalization of endogenous CMKLR1, following the addition of chemerin, is decreased in inflammatory macrophages from GRK6- and ß-arrestin 2-deficient mice. These GRK6- and ß-arrestin 2-deficient macrophages display increased migration toward chemerin and altered AKT and Extracellular-signal Related Kinase (ERK) signaling. Our findings show that chemerin-activated CMKLR1 regulation in inflammatory macrophages is largely GRK6 and ß-arrestin mediated, which may impact innate immunity and have therapeutic implications in rheumatic disease.


Assuntos
Quimiocinas/imunologia , Quinases de Receptores Acoplados a Proteína G/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Macrófagos/imunologia , Receptores Acoplados a Proteínas G/imunologia , beta-Arrestina 2/imunologia , Animais , Linhagem Celular , Quimiocinas/genética , Quinases de Receptores Acoplados a Proteína G/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/genética , Doenças Reumáticas/genética , Doenças Reumáticas/imunologia , Doenças Reumáticas/patologia , beta-Arrestina 2/genética
12.
Nat Genet ; 49(10): 1437-1449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892060

RESUMO

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Assuntos
Redes Reguladoras de Genes , Genes Reguladores , Genômica/métodos , Doenças Inflamatórias Intestinais/genética , Modelos Genéticos , Transferência Adotiva , Animais , Causalidade , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Subpopulações de Linfócitos T/transplante , Transcriptoma
13.
Anal Chem ; 88(15): 7786-92, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391352

RESUMO

The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.


Assuntos
Artrite Reumatoide/patologia , Eletroforese Capilar , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinoviócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Artrite Reumatoide/metabolismo , Células Cultivadas , Cromonas/farmacologia , Fibroblastos/citologia , Humanos , Insulina/farmacologia , Morfolinas/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Sinoviócitos/citologia , Sinoviócitos/metabolismo
14.
PLoS One ; 11(4): e0152856, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27049755

RESUMO

Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.


Assuntos
Neoplasias da Mama/patologia , Quinase 3 de Receptor Acoplado a Proteína G/fisiologia , Animais , Feminino , Quinase 3 de Receptor Acoplado a Proteína G/genética , Inativação Gênica , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica
15.
J Immunol ; 196(10): 4030-9, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27059595

RESUMO

Apoptotic debris, autoantibody, and IgG-immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that PBMCs from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction. Accumulation of IgG-ICs is evident on ex vivo myeloid cells from MRL/lpr mice by 10 wk of age and steadily increases prior to lupus nephritis. IgG and FcγRI play a critical role in disease pathology. Passive transfer of pathogenic IgG into IgG-deficient MRL/lpr mice promotes the accumulation of IgG-ICs prior to significant B cell expansion, BAFF secretion, and lupus nephritis. In contrast, diminishing the burden IgG-ICs in MRL/lpr mice through deficiency in FcγRI markedly improves these lupus pathologies. Taken together, our findings reveal a previously unappreciated role for the cell surface accumulation of IgG-ICs in human and murine lupus.


Assuntos
Apoptose , Células Sanguíneas/imunologia , Células Dendríticas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/imunologia , Adulto , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Fator Ativador de Células B/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de IgG/genética , Adulto Jovem
16.
Nanomedicine ; 11(7): 1797-807, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093057

RESUMO

Nanoparticles (NPs) are cleared by monocytes and macrophages. Chemokines CCL2 and CCL5 are key mediators for recruitment of these immune cells into tumors and tissues. The purpose of this study was to investigate effects of CCL2 and CCL5 on the pharmacokinetics (PKs) of NPs. Mice deficient in CCL2 or CCL5 demonstrated altered clearance and tissue distribution of polyethylene glycol tagged liposomal doxorubicin (PLD) compared to control mice. The PK studies using mice bearing SKOV3 ovarian cancer xenografts revealed that the presence of tumor cells and higher expression of chemokines were significantly associated with greater clearance of PLD compared to non-tumor bearing mice. Plasma exposure of encapsulated liposomal doxorubicin positively correlated with the total exposure of plasma CCL2 and CCL5 in patients with recurrent epithelial ovarian cancer treated with PLD. These data emphasize that the interplay between PLD and chemokines may have an important role in optimizing PLD therapy. FROM THE CLINICAL EDITOR: The use of nanoparticles as drug delivery carriers is gaining widespread acceptance in the clinical setting. However, the underlying pharmacokinetics of these novel drugs has not really been elucidated. In this interesting article, the authors carried out experiments using mice deficient in CCL2 or CCL5 to study the clearance of liposomal system. They showed the important role the immune system played and would enable better designs of future drug delivery systems.


Assuntos
Quimiocina CCL2/sangue , Quimiocina CCL5/sangue , Doxorrubicina/análogos & derivados , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Carcinoma Epitelial do Ovário , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Clin Cancer Res ; 20(23): 6083-95, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25231403

RESUMO

PURPOSE: Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy. EXPERIMENTAL DESIGNS: C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53(Null) orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or polyethylene glycol tagged (PEGylated) liposomal doxorubicin (PLD) was administered at 6 mg/kg i.v. x1. Area under the concentration versus time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of vasculature were assessed by IHC. Chemokines and cytokines were measured by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg i.v. weekly x6 in efficacy studies. Analyses of intermediary tumor response and overall survival were performed. RESULTS: Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin was similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-TAg compared with T11 (P < 0.05). T11 tumors showed significantly higher expression of CC chemokine ligand (CCL) 2 and VEGF-a, greater vascular quantity, and decreased expression of VEGF-c compared with C3-TAg (P < 0.05). PLD was more efficacious compared with NL-doxo in both models. CONCLUSION: The tumor microenvironment and/or tumor cell features of breast cancer affected NP tumor delivery and efficacy, but not the small-molecule drug. Our findings reveal the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes.


Assuntos
Neoplasias da Mama/patologia , Nanopartículas/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Quimiocina CCL2/sangue , Quimiocina CCL2/metabolismo , Quimiocina CCL5/sangue , Quimiocina CCL5/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/administração & dosagem , Neovascularização Patológica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Curr Allergy Asthma Rep ; 14(9): 462, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086580

RESUMO

Autoimmune lymphoproliferative syndrome (ALPS) is characterized by immune dysregulation due to a defect in lymphocyte apoptosis. The clinical manifestations may be noted in multiple family members and include lymphadenopathy, splenomegaly, increased risk of lymphoma, and autoimmune disease, which typically involves hematopoietic cell lines manifesting as multilineage cytopenias. Since the disease was first characterized in the early 1990s, there have been many advances in the diagnosis and management of this syndrome. The inherited genetic defect of many ALPS patients has involved (FAS) pathway signaling proteins, but there remain those patients who carry undefined genetic defects. Despite ALPS having historically been considered a primary immune defect presenting in early childhood, adult onset presentation is increasingly becoming recognized and more so in genetically undefined patients and those with somatic FAS mutations. Thus, future research may identify novel pathways and/or regulatory proteins important in lymphocyte activation and apoptosis.


Assuntos
Síndrome Linfoproliferativa Autoimune , Imunossupressores/uso terapêutico , Receptor fas/genética , Anti-Inflamatórios/uso terapêutico , Apoptose , Síndrome Linfoproliferativa Autoimune/complicações , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/tratamento farmacológico , Síndrome Linfoproliferativa Autoimune/genética , Diagnóstico Diferencial , Humanos , Ativação Linfocitária/imunologia , Transdução de Sinais , Esplenomegalia/etiologia , Linfócitos T/imunologia , Receptor fas/fisiologia
19.
Curr Allergy Asthma Rep ; 14(2): 402, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24408534

RESUMO

Recent investigations have expanded our knowledge of the regulatory bone marrow (BM) niche, which is critical in maintaining and directing hematopoietic stem cell (HSC) self-renewal and differentiation. Osteoblasts, mesenchymal stem cells (MSCs), and CXCL12-abundant reticular (CAR) cells are niche components in close association with HSCs and have been more clearly defined in immune cell function and homeostasis. Importantly, cellular inhabitants of the BM niche signal through G protein-coupled surface receptors (GPCRs) for various appropriate immune functions. In this article, recent literature on BM niche inhabitants (HSCs, osteoblasts, MSCs, CAR cells) and their GPCR mechanistic interactions are reviewed for better understanding of the BM cells involved in immune development, immunologic disease, and current immune reconstitution therapies.


Assuntos
Células da Medula Óssea/imunologia , Medula Óssea/imunologia , Animais , Células da Medula Óssea/citologia , Comunicação Celular , Células-Tronco Hematopoéticas/imunologia , Humanos , Doenças do Sistema Imunitário/metabolismo , Células-Tronco Mesenquimais/imunologia
20.
Curr Allergy Asthma Rep ; 12(6): 495-510, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054625

RESUMO

Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren's syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Autoimunidade/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Animais , Anticorpos Monoclonais Murinos/uso terapêutico , Antineoplásicos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Autoimunidade/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Terapia Biológica , Humanos , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/imunologia , Rituximab , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA