Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 168(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833564

RESUMO

In brief: Atrazine, like oestrogen, disorganises laminin formation and reduces the number of germ cells and Sertoli cells in the developing testes of the tammar wallaby. This study suggests that interfering with the balance of androgen and oestrogen affects the integrity of laminin structure and testis differentiation. Abstract: The herbicide atrazine was banned in Europe in 2003 due to its endocrine disrupting activity but remains widely used. The integrity of the laminin structure in fetal testis cords requires oestrogen signalling but overexposure to xenoestrogens in the adult can cause testicular dysgenesis. However, whether xenoestrogens affect laminin formation in developing testes has not been investigated. Here we examined the effects of atrazine in the marsupial tammar wallaby during early development and compare it with the effects of the anti-androgen flutamide, oestrogen, and the oestrogen degrader fulvestrant. The tammar, like all marsupials, gives birth to altricial young, allowing direct treatment of the developing young during the male programming window (day 20-40 post partum (pp)). Male pouch young were treated orally with atrazine (5 mg/kg), flutamide (10 mg/kg), 17ß-oestradiol (2.5 mg/kg) and fulvestrant (1 mg/kg) daily from day 20 to 40 pp. Distribution of laminin, vimentin, SOX9 and DDX4, cell proliferation and mRNA expression of SRY, SOX9, AMH, and SF1 were examined in testes at day 50 post partum after the treatment. Direct exposure to atrazine, flutamide, 17ß-oestradiol, and fulvestrant all disorganised laminin but had no effect on vimentin distribution in testes. Atrazine reduced the number of germ cells and Sertoli cells when examined at day 40-50 pp and day 20 to 40 pp, respectively. Both flutamide and fulvestrant reduced the number of germ cells and Sertoli cells. Atrazine also downregulated SRY expression and impaired SOX9 nuclear translocation. Our results demonstrate that atrazine can compromise normal testicular differentiation during the critical male programming window.


Assuntos
Atrazina , Diferenciação Celular , Herbicidas , Laminina , Testículo , Masculino , Animais , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/citologia , Atrazina/farmacologia , Laminina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Herbicidas/farmacologia , Macropodidae/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/citologia , Estrogênios/farmacologia , Estrogênios/metabolismo , Disruptores Endócrinos/farmacologia , Contagem de Células , Antagonistas de Androgênios/farmacologia , Flutamida/farmacologia
2.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059607

RESUMO

Hypospadias is a failure of urethral closure within the penis occurring in 1 in 125 boys at birth and is increasing in frequency. While paracrine hedgehog signalling is implicated in the process of urethral closure, how these factors act on a tissue level to execute closure itself is unknown. This study aimed to understand the role of different hedgehog signalling members in urethral closure. The tammar wallaby (Macropus eugenii) provides a unique system to understand urethral closure as it allows direct treatment of developing offspring because mothers give birth to young before urethral closure begins. Wallaby pouch young were treated with vehicle or oestradiol (known to induce hypospadias in males) and samples subjected to RNAseq for differential expression and gene ontology analyses. Localisation of Sonic Hedgehog (SHH) and Indian Hedgehog (IHH), as well as the transcription factor SOX9, were assessed in normal phallus tissue using immunofluorescence. Normal tissue culture explants were treated with SHH or IHH and analysed for AR, ESR1, PTCH1, GLI2, SOX9, IHH and SHH expression by qPCR. Gene ontology analysis showed enrichment for bone differentiation terms in male samples compared with either female samples or males treated with oestradiol. Expression of SHH and IHH localised to specific tissue areas during development, akin to their compartmentalised expression in developing bone. Treatment of phallus explants with SHH or IHH induced factor-specific expression of genes associated with bone differentiation. This reveals a potential developmental interaction involved in urethral closure that mimics bone differentiation and incorporates discrete hedgehog activity within the developing phallus and phallic urethra.


Assuntos
Genitália Masculina/crescimento & desenvolvimento , Genitália Masculina/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Masculina/patologia , Humanos , Hipospadia , Masculino , Pênis/metabolismo , RNA Mensageiro , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Uretra/metabolismo
3.
J Steroid Biochem Mol Biol ; 189: 240-247, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30654105

RESUMO

Active vitamin D (1,25(OH)2D) has been shown to regulate numerous cell processes in mammary cells. Degradation of 1,25(OH)2D is initiated by the mitochondrial enzyme, 25-hydroxyvitamin D 24-hydroxylase (CYP24 A1), and provides local control of 1,25(OH)2D bioactivity. Several reports of the association between elevated CYP24 A1 activity and breast cancer incidence, suggest that CYP24 A1 may be a target for therapeutic intervention. Whether CYP24 A1 activity within the mammary epithelium regulates 1,25(OH)2D levels and mammary gland development is yet to shown. We have used a conditional knockout of the Cyp24a1 gene specifically in the mammary epithelium to demonstrate reduced terminal end bud number, ductal outgrowth and branching during puberty and alveologenesis at early pregnancy, by inhibiting proliferation but not apoptosis in both basal and luminal MECs. In vitro study showed increased sensitivity of luminal MECs to lower levels of 1,25(OH)2D with the ablation of Cyp24a1 activity. In summary, Cyp24a1 within MECs plays an important role in modulating postnatal and pregnancy-associated mammary gland development which provides support for inhibiting CYP24 A1 as a potential approach to activating the vitamin D pathway in breast cancer prevention and therapy.


Assuntos
Deleção de Genes , Glândulas Mamárias Animais/metabolismo , Vitamina D3 24-Hidroxilase/genética , Vitamina D/metabolismo , Animais , Proliferação de Células , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Maturidade Sexual , Vitamina D/análogos & derivados , Vitamina D3 24-Hidroxilase/metabolismo
4.
J Mammary Gland Biol Neoplasia ; 24(1): 99-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30099649

RESUMO

Androgens influence mammary gland development but the specific role of the androgen receptor (AR) in mammary function is largely unknown. We identified cell subsets that express AR in vivo and determined the effect of AR activation and transgenic AR inhibition on sub-populations of the normal mouse mammary epithelium by flow cytometry and immunohistochemistry. Immunolocalisation of AR with markers of lineage identity was also performed in human breast tissues. AR activation in vivo significantly decreased the proportion of basal cells, and caused an accumulation of cells that expressed a basal cell marker but exhibited morphological features of luminal identity. Conversely, in AR null mice the proportion of basal mammary epithelial cells was significantly increased. Inhibition of AR increased basal but not luminal progenitor cell activity in vitro. A small population of AR-positive cells in a basal-to-luminal phenotype transition was also evident in human breast lobules. Collectively, these data support a role for AR in promoting a luminal phenotype in mammary epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Receptores Androgênicos/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Estro/metabolismo , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Knockout , Pré-Menopausa/metabolismo , Cultura Primária de Células , Receptores Androgênicos/genética , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia
5.
Cancer Res ; 77(13): 3417-3430, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473532

RESUMO

Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Embrião de Galinha , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Oncogenes , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
6.
Nat Rev Cancer ; 17(1): 54-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27885264

RESUMO

Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Progestinas/metabolismo , Progestinas/uso terapêutico , Receptores de Progesterona/metabolismo , Neoplasias da Mama/fisiopatologia , Feminino , Humanos , Receptores de Progesterona/efeitos dos fármacos
7.
Mol Cell Endocrinol ; 440: 138-150, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889472

RESUMO

Estrogen Receptor-ß (ERß) has been implicated in many cancers. In prostate and breast cancer its function is controversial, but genetic studies implicate a role in cancer progression. Much of the confusion around ERß stems from antibodies that are inadequately validated, yet have become standard tools for deciphering its role. Using an ERß-inducible cell system we assessed commonly utilized ERß antibodies and show that one of the most commonly used antibodies, NCL-ER-BETA, is non-specific for ERß. Other antibodies have limited ERß specificity or are only specific in one experimental modality. ERß is commonly studied in MCF-7 (breast) and LNCaP (prostate) cancer cell lines, but we found no ERß expression in either, using validated antibodies and independent mass spectrometry-based approaches. Our findings question conclusions made about ERß using the NCL-ER-BETA antibody, or LNCaP and MCF-7 cell lines. We describe robust reagents, which detect ERß across multiple experimental approaches and in clinical samples.


Assuntos
Anticorpos Antineoplásicos/farmacologia , Receptor beta de Estrogênio/imunologia , Mama/efeitos dos fármacos , Mama/metabolismo , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Indicadores e Reagentes , Masculino , Peptídeos , Próstata/efeitos dos fármacos , Próstata/metabolismo , Reprodutibilidade dos Testes
8.
Cancer Res ; 76(19): 5881-5893, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496708

RESUMO

Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.


Assuntos
Neoplasias da Mama/enzimologia , Receptor alfa de Estrogênio/análise , Glucuronosiltransferase/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Receptores Androgênicos/análise , Anilidas/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glucuronosiltransferase/genética , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Humanos , Antígenos de Histocompatibilidade Menor/genética , Regiões Promotoras Genéticas , Receptor ErbB-2/análise
9.
Oncotarget ; 6(42): 44728-44, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26554309

RESUMO

The importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon. Herein, we show that in addition to the prototypical transcript, the AR gene produces a diverse range of AR-V transcripts in primary breast tumors. The most frequently and highly expressed variant was AR-V7 (exons 1/2/3/CE3), which was detectable at the mRNA level in > 50% of all breast cancers and at the protein level in a subset of ERα-negative tumors. Functionally, AR-V7 is a constitutively active and ADT-resistant transcription factor that promotes growth and regulates a transcriptional program distinct from AR in ERα-negative breast cancer cells. Importantly, we provide ex vivo evidence that AR-V7 is upregulated by the AR antagonist enzalutamide in primary breast tumors. These findings have implications for treatment response in the ongoing clinical trials of ADT in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Benzamidas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Isoformas de Proteínas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/genética , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção
10.
J Mammary Gland Biol Neoplasia ; 20(1-2): 75-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26390871

RESUMO

The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.


Assuntos
Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptores de Progesterona/metabolismo , Androgênios/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Plasticidade Celular , Proliferação de Células , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Nature ; 523(7560): 313-7, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26153859

RESUMO

Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Progesterona/metabolismo , Progesterona/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Progesterona/genética , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Endocr Relat Cancer ; 21(4): T183-202, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25001242

RESUMO

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.


Assuntos
Androgênios/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores Notch/fisiologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Breast Cancer Res ; 16(1): R1, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24398145

RESUMO

INTRODUCTION: Parity-identified mammary epithelial cells (PI-MECs) are an interesting cellular subset because they survive involution and are a presumptive target for transformation by human epidermal growth factor receptor 2 (HER2)/neu in mammary tumors. Depending on the type of assay, PI-MECs have been designated lobule-restricted progenitors or multipotent stem/progenitor cells. PI-MECs were reported to be part of the basal population of mammary epithelium based on flow cytometry. We investigated the cellular identity and lineage potential of PI-MECs in intact mammary glands. METHODS: We performed a quantitative and qualitative analysis of the contribution of PI-MECs to mammary epithelial cell lineages in pregnant and involuted mammary glands by immunohistochemistry, fluorescence-activated cells sorting (FACS), and quantitative polymerase chain reaction. PI-MECs were labeled by the activation of Whey Acidic Protein (WAP)-Cre during pregnancy that results in permanent expression of yellow fluorescent protein. RESULTS: After involution, PI-MECs are present exclusively in the luminal layer of mammary ducts. During pregnancy, PI-MECs contribute to the luminal layer but not the basal layer of alveolar lobules. Strikingly, whereas all luminal estrogen receptor (ER)-negative cells in an alveolus can be derived from PI-MECs, the alveolar ER-positive cells are unlabeled and reminiscent of Notch2-traced L cells. Notably, we observed a significant population of unlabeled alveolar progenitors that resemble PI-MECs based on transcriptional and histological analysis. CONCLUSIONS: Our demonstration that PI-MECs are luminal cells underscores that not only basal cells display multi-lineage potential in transplantation assays. However, the lineage potential of PI-MECs in unperturbed mammary glands is remarkably restricted to luminal ER-negative cells of the secretory alveolar lineage. The identification of an unlabeled but functionally similar population of luminal alveolar progenitor cells raises the question of whether PI-MECs are a unique population or the result of stochastic labeling. Interestingly, even when all luminal ER-negative cells of an alveolus are PI-MEC-derived, the basal cells and hormone-sensing cells are derived from a different source, indicating that cooperative outgrowth of cells from different lineages is common in alveologenesis.


Assuntos
Proteínas de Bactérias/genética , Linhagem da Célula , Células Epiteliais/citologia , Proteínas Luminescentes/genética , Glândulas Mamárias Animais/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígeno CD24/metabolismo , Caseínas/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Citometria de Fluxo , Integrina alfa6/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Leite/farmacologia , Paridade , Gravidez , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo
15.
Spermatogenesis ; 3(1): e24014, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23687617

RESUMO

It is widely held that the somatic cell population that is responsible for sperm development and output (Sertoli cells) is terminally differentiated and unmodifiable in adults. It is postulated, with little evidence, that Sertoli cells are not terminally differentiated in some phenotypes of infertility and testicular cancer. This study sought to compare markers of Sertoli cell differentiation in normospermic men, oligospermic men (undergoing gonadotropin suppression) and testicular carcinoma in situ (CIS) and seminoma samples. Confocal microscopy was used to assess the expression of markers of proliferation (PCNA and Ki67) and functional differentiation (androgen receptor). As additional markers of differentiation, the organization of Sertoli cell tight junction and associated proteins were assessed in specimens with carcinoma in situ. In normal men, Sertoli cells exhibited a differentiated phenotype (i.e., PCNA and Ki67 negative, androgen 40 receptor positive). However, after long-term gonadotropin suppression, 1.7 ± 0.6% of Sertoli cells exhibited PCNA reactivity associated with a diminished immunoreactivity in androgen receptor, suggesting an undifferentiated phenotype. Ki67-positive Sertoli cells were also observed. PCNA-positive Sertoli cells were never observed in tubules with carcinoma in situ, and only rarely observed adjacent to seminoma. Tight junction protein localization (claudin 11, JAM-A and ZO-1) was altered in CIS, with a reduction in JAM-A reactivity in Sertoli cells from tubules with CIS and the emergence of strong JAM-A reactivity in seminoma. These findings indicate that adult human Sertoli cells exhibit characteristics of an undifferentiated state in oligospermic men and patients with CIS and seminoma in the presence of germ cell neoplasia.

16.
Biotechniques ; 54(4): 208-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23581467

RESUMO

Since tissues and tumors are heterogenous populations containing different cell types, their transcriptomes are blends of multiple mRNA expression profiles. Although fluorescence-activated cell sorting (FACS) allows isolation of individual cell types, RNA isolation and quantification remain problematic from rare subsets, such as tissue stem cells. Likewise, identification of transcriptional changes relevant to the tumorigenic potential of mammalian cells while they are actively growing as colonies in soft agar is also hampered by limited amounts of starting material. Here we describe a convenient method that fills the gap between single cell and whole tissue mRNA analysis, enabling mRNA quantification for individual colonies picked from soft agar. Our method involves direct lysis, reverse transcription and quantitative PCR (RT-qPCR) on 500 sorted cells or a single soft agar colony, thus allowing evaluation of up to 20 transcripts in functionally distinct subpopulations without the need for RNA isolation or amplification.


Assuntos
Mama/citologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ágar/química , Animais , Mama/metabolismo , Neoplasias da Mama/genética , Contagem de Células , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Camundongos , RNA Mensageiro/análise
17.
Breast Cancer Res ; 15(1): R10, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23369183

RESUMO

INTRODUCTION: The molecular circuitry of different cell types dictates their normal function as well as their response to oncogene activation. For instance, mice lacking the Wip1 phosphatase (also known as PPM1D; protein phosphatase magnesium-dependent 1D) have a delay in HER2/neu (human epidermal growth factor 2), but not Wnt1-induced mammary tumor formation. This suggests a cell type-specific reliance on Wip1 for tumorigenesis, because alveolar progenitor cells are the likely target for transformation in the MMTV(mouse mammary tumor virus)-neu but not MMTV-wnt1 breast cancer model. METHODS: In this study, we used the Wip1-knockout mouse to identify the cell types that are dependent on Wip1 expression and therefore may be involved in the early stages of HER2/neu-induced tumorigenesis. RESULTS: We found that alveolar development during pregnancy was reduced in Wip1-knockout mice; however, this was not attributable to changes in alveolar cells themselves. Unexpectedly, Wip1 allows steroid hormone-receptor-positive cells but not alveolar progenitors to activate STAT5 (signal transducer and activator of transcription 5) in the virgin state. In the absence of Wip1, hormone-receptor-positive cells have significantly reduced transcription of RANKL (receptor activator of nuclear factor kappa-B ligand) and IGF2 (insulin-like growth factor 2), paracrine stimulators of alveolar development. In the MMTV-neu model, HER2/neu activates STAT5 in alveolar progenitor cells independent of Wip1, but HER2/neu does not override the defect in STAT5 activation in Wip1-deficient hormone-sensing cells, and paracrine stimulation remains attenuated. Moreover, ERK (extracellular signal-regulated kinase) activation by HER2/neu in hormone-sensing cells is also Wip1 dependent. CONCLUSIONS: We identified Wip1 as a potentiator of prolactin and HER2/neu signaling strictly in the molecular context of hormone-sensing cells. Furthermore, our findings highlight that hormone-sensing cells convert not only estrogen and progesterone but also prolactin signals into paracrine instructions for mammary gland development. The instructive role of hormone-sensing cells in premalignant development suggests targeting Wip1 or prolactin signaling as an orthogonal strategy for inhibiting breast cancer development or relapse.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica , Neoplasias Mamárias Animais/genética , Fosfoproteínas Fosfatases/genética , Animais , Neoplasias da Mama/patologia , Estrogênios/metabolismo , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Fosfoproteínas Fosfatases/metabolismo , Gravidez , Prolactina/metabolismo , Proteína Fosfatase 2C , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
18.
Endocrinology ; 151(6): 2911-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20357222

RESUMO

Sertoli cell tight junctions (TJs) are an essential component of the blood-testis barrier required for spermatogenesis; however, the role of gonadotropins in their maintenance is unknown. This study aimed to investigate the effect of gonadotropin suppression and short-term replacement on TJ function and TJ protein (occludin and claudin-11) expression and localization, in an adult rat model in vivo. Rats (n = 10/group) received the GnRH antagonist, acyline, for 7 wk to suppress gonadotropins. Three groups then received for 7 d: 1) human recombinant FSH, 2) human chorionic gonadotropin (hCG) and rat FSH antibody (to study testicular androgen stimulation alone), and 3) hCG alone (to study testicular androgen and pituitary FSH production). TJ proteins were assessed by real-time PCR, Western blot analysis, and immunohistochemistry, whereas TJ function was assessed with a biotin permeation tracer. Acyline treatment significantly reduced testis weights, serum androgens, LH and FSH, and adluminal germ cells (pachytene spermatocyte, round and elongating spermatids). In contrast to controls, acyline induced seminiferous tubule permeability to biotin, loss of tubule lumens, and loss of occludin, but redistribution of claudin-11, immunostaining. Short-term hormone replacement stimulated significant recoveries in adluminal germ cell numbers. In hCG +/- FSH antibody-treated rats, occludin and claudin-11 protein relocalized at the TJ, but such relocalization was minimal with FSH alone. Tubule lumens also reappeared, but most tubules remained permeable to biotin tracer, despite the presence of occludin. It is concluded that gonadotropins maintain Sertoli cell TJs in the adult rat via a mechanism that includes the localization of occludin and claudin-11 at functional TJs.


Assuntos
Gonadotropinas/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Junções Íntimas/metabolismo , Androgênios/sangue , Animais , Western Blotting , Gonadotropina Coriônica/farmacologia , Claudinas , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/farmacologia , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Imuno-Histoquímica , Hormônio Luteinizante/sangue , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ocludina , Oligopeptídeos/farmacologia , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Espermátides/efeitos dos fármacos , Espermátides/metabolismo , Espermatócitos/efeitos dos fármacos , Espermatócitos/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Junções Íntimas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA