Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169648, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159772

RESUMO

Global warming has led to an increase in extreme weather and climate phenomena, including floods and heatwaves. Marine heatwaves have frightening consequences for coastal benthic communities around the world. Each species exhibits a natural range of thermal tolerance and responds to temperature variations through behavioral, physiological, biochemical, and molecular adjustments. Physiological stress leading to disease and mass mortality appears when tolerance thresholds are exceeded. Sessile species are therefore particularly affected by these phenomena. Among these sessile species, marine sponges are important members of coral reef ecosystems. To better understand the sponge thermal stress response, we tested the response of demosponge Chondrosia reniformis (Nardo, 1847) to three different temperatures (8 °C, 24 °C and 30 °C) during two exposure periods of time (4 and 14 h). Histological studies of whole parts of the sponge, biochemical analyses (Defense enzymes) and gene expression levels of some target genes were undertaken in this study. The exposure to cold temperature (8 °C) resulted in inhibition of antioxidant enzymes and less modification in the gene expression level of the heat shock proteins (HSPs). These latter were strongly upregulated after exposure to a temperature of 24 °C for 4 h. However, exposure to 30 °C at both periods of time resulted in indication of HSP, antioxidant enzymes, the gene involved in the apoptosis process (Bcl-2: B-cell lymphoma 2), the gene involved in inflammation (TNF: Tumor Necrosis Factor), as well as the aquaporin gene, involved in H2O2 permeation. Moreover, the normal organization of the whole organism was disrupted by the extension and fusion of choanocyte chambers and alteration of the pinacoderm. Interestingly, exposure to sublethal temperatures may show that this sponge has an adaptation threshold temperature. These insights into the adaptation mechanisms of sponges contribute to better management and conservation of sponges and to the prediction of ecosystem trajectories with future climate change.


Assuntos
Ecossistema , Poríferos , Animais , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/fisiologia
2.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613670

RESUMO

Chemotrophic choice as a metabolic source of energy has characterised animal cell evolution. However, light interactions with animal cell photoacceptors that are able to increase energetic metabolism (photo-biomodulation (PBM)) have been previously described. In the present study, we cut three specimens of Chondrosia reniformis into four equal parts (12 fragments), and we irradiated the regenerating edge of six fragments with the previously characterised 810 nm near-infrared light, delivered at 1 W, 60 J/cm2, 1 W/cm2, and 60 J in a continuous-wave mode for 60 s through a flat-top hand-piece with a rounded spot-size area of 1 cm2. Six fragments were irradiated with 0 W for 60 s as the controls. We performed irradiation at the time 0 h and every 24 h for a total of five administrations. We monitored the regeneration process for five days (120 h) in aquaria by examining the macroscopic and histological changes. We analysed the gene expression profile of the inflammatory processes, apoptosis, heat stress, growth factors, and collagen production and determined oxidative stress enzyme activity and the total prokaryotic symbiont content. PBM sped up C. reniformis regeneration when compared to the controls. Particularly, transforming growth factor TGF3 and TGF6 upregulation during the early phase of regeneration and TGF5 upregulation 120 h postinjury in the irradiated samples supports the positive effect of PBM in sponge tissue recovery. Conversely, the expression of TGF4, a sponge fibroblast growth factor homologue, was not affected by irradiation, indicating that multiple, independent pathways regulate the TGF genes. The results are consistent with our previous data on a wide range of organisms and humans, suggesting that PBM interaction with primary and secondary cell targets has been conserved through the evolution of life forms.


Assuntos
Terapia com Luz de Baixa Intensidade , Poríferos , Animais , Humanos , Colágeno , Raios Infravermelhos , Comunicação Celular , Fatores de Crescimento Transformadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA