Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792163

RESUMO

To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs 1-4 have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in meta and para positions of catechol portion (5APs 1); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs 2); (iii) a more flexible alkyl chain was inserted on N1 position (5APs 3); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs 4). All new derivatives 1-4 have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties. In addition, in silico pharmacokinetics, drug-likeness properties, and toxicity have been calculated. 5APs 1 emerged to be promising anti-proliferative agents, able to suppress the growth of specific cancer cell lines. Furthermore, derivatives 3 remarkably inhibited ROS production in platelets and 5APs 4 showed interesting in vitro radical scavenging properties. Overall, the collected results further confirm the pharmaceutical potentials of this class of compounds and support future studies for the development of novel anti-proliferative and antioxidant agents.


Assuntos
Antineoplásicos , Antioxidantes , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular
2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543162

RESUMO

To meet the urgent need for new antibacterial molecules, a small library of pyrazolyl thioureas (PTUs) was designed, synthesized and tested against difficult-to-treat human pathogens. The prepared derivatives are characterized by a carboxyethyl functionality on C4 and different hydroxyalkyl chains on N1. Compounds 1a-o were first evaluated against a large panel of Gram-positive and Gram-negative pathogens. In particular, the majority of PTUs proved to be active against different species of the Staphylococcus genus, with MIC values ranging from 32 to 128 µg/mL on methicillin-resistant Staphylococcus strains, often responsible for severe pulmonary disease in cystic fibrosis patients. Time-killing experiments were also performed for the most active compounds, evidencing a bacteriostatic mechanism of action. For most active derivatives, cytotoxicity was evaluated in Vero cells, and at the tested concentrations and at the experimental exposure time of 24 h, none of the compounds analysed showed significant toxicity. In addition, favourable drug-like, pharmacokinetic and toxicity properties were predicted for all new synthesized derivatives. Overall, the collected data confirmed the PTU scaffold as a promising chemotype for the development of novel antibacterial agents active against Gram-positive multi-resistant strains frequently isolated from cystic fibrosis patients.

3.
Pharmaceutics ; 15(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37514002

RESUMO

The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery.

4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615638

RESUMO

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Assuntos
Antineoplásicos , Neoplasias , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo
5.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275623

RESUMO

Neuroblastoma (NB) is a paediatric cancer with noteworthy heterogeneity ranging from spontaneous regression to high-risk forms that are characterised by cancer relapse and the acquisition of drug resistance. The most-used anticancer drugs exert their cytotoxic effect by inducing oxidative stress, and long-term therapy has been demonstrated to cause chemoresistance by enhancing the antioxidant response of NB cells. Taking advantage of an in vitro model of multidrug-resistant (MDR) NB cells, characterised by high levels of glutathione (GSH), the overexpression of the oncoprotein BMI-1, and the presence of a mutant P53 protein, we investigated a new potential strategy to fight chemoresistance. Our results show that PTC596, an inhibitor of BMI-1, exerted a high cytotoxic effect on MDR NB cells, while PRIMA-1MET, a compound able to reactivate mutant P53, had no effect on the viability of MDR cells. Furthermore, both PTC596 and PRIMA-1MET markedly reduced the expression of epithelial-mesenchymal transition proteins and limited the clonogenic potential and the cancer stemness of MDR cells. Of particular interest is the observation that PTC596, alone or in combination with PRIMA-1MET and etoposide, significantly reduced GSH levels, increased peroxide production, stimulated lipid peroxidation, and induced ferroptosis. Therefore, these findings suggest that PTC596, by inhibiting BMI-1 and triggering ferroptosis, could be a promising approach to fight chemoresistance.

6.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145308

RESUMO

Retinoblastoma is a rare, sometimes hereditary, pediatric cancer. In high-income countries this disease has a survival rate approaching 100%, while in low- and middle-income countries the prognosis is fatal for about 80% of cases. Depending on the stage of the disease, different therapeutic protocols are applied. In more advanced forms of the disease, surgical removal of the entire globe and its intraocular contents (enucleation) is, unfortunately, necessary, whereas in other cases, conventional chemotherapy is normally used. To overcome the side-effects and reduced efficacy of traditional chemotherapic drugs, nanodelivery systems that ensure a sustained drug release and manage to reach the target site have more recently been developed. This review takes into account the current use and advances of nanomedicine in the treatment of retinoblastoma and discusses nanoparticulate formulations that contain conventional drugs and natural products. In addition, future developments in retinoblastoma treatment are discussed.

7.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742823

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35337072

RESUMO

Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride's mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure-activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.

9.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885993

RESUMO

Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/classificação , Animais , Linfócitos B/metabolismo , Humanos , Concentração Inibidora 50 , Resultado do Tratamento
10.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207175

RESUMO

Nanotechnology is an important application in modern cancer therapy. In comparison with conventional drug formulations, nanoparticles ensure better penetration into the tumor mass by exploiting the enhanced permeability and retention effect, longer blood circulation times by a reduced renal excretion and a decrease in side effects and drug accumulation in healthy tissues. The most significant classes of nanoparticles (i.e., liposomes, inorganic and organic nanoparticles) are here discussed with a particular focus on their use as delivery systems for small molecule tyrosine kinase inhibitors (TKIs). A number of these new compounds (e.g., Imatinib, Dasatinib, Ponatinib) have been approved as first-line therapy in different cancer types but their clinical use is limited by poor solubility and oral bioavailability. Consequently, new nanoparticle systems are necessary to ameliorate formulations and reduce toxicity. In this review, some of the most important TKIs are reported, focusing on ongoing clinical studies, and the recent drug delivery systems for these molecules are investigated.


Assuntos
Antineoplásicos/farmacologia , Nanotecnologia , Inibidores de Proteínas Quinases/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade , Resultado do Tratamento
11.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299259

RESUMO

In the past few years, Bruton's tyrosine Kinase (Btk) has emerged as new target in medicinal chemistry. Since approval of ibrutinib in 2013 for treatment of different hematological cancers (as leukemias and lymphomas), two other irreversible Btk inhibitors have been launched on the market. In the attempt to overcome irreversible Btk inhibitor limitations, reversible compounds have been developed and are currently under evaluation. In recent years, many Btk inhibitors have been patented and reported in the literature. In this review, we summarized the (ir)reversible Btk inhibitors recently developed and studied clinical trials and preclinical investigations for malignancies, chronic inflammation conditions and SARS-CoV-2 infection, covering advances in the field of medicinal chemistry. Furthermore, the nanoformulations studied to increase ibrutinib bioavailability are reported.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Adenina/administração & dosagem , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/metabolismo , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Piperidinas/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
Med Chem ; 17(6): 646-657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32141420

RESUMO

BACKGROUND: Cystic fibrosis (CF) is the autosomal recessive disorder most common in Caucasian populations. It is caused by mutations in the cystic fibrosis transmembrane regulator protein (CFTR). CFTR is predominantly expressed at the apical plasma membranes of the epithelial cells lining several organs, and functions as a cAMP-regulated chloride/bicarbonate channel. To address the underlying causes of cystic fibrosis, two biomolecular activities are required, namely correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. OBJECTIVE: In our previous data, we demonstrated that some aminoarylthiazoles (AATs) have peculiar activity acting as correctors and as potentiator-like molecules. Curiously, a compound called 1 has been shown to be markedly active as a potentiator. Now, we have further modified its scaffold at different portions, for the identification of molecules with improved potency and effectiveness on mutant CFTR. METHODS: Starting from this active compound, we synthesized a small library trying to improve the activity as potentiators. To extrapolate the contribution of a particular structural portion to bioactivity, we selectively modified one portion at a time. RESULTS: Our study has provided a structure-activity relationship (SAR) on AATs and led to the identification of some compounds, with a particular ability to act as CFTR potentiators. CONCLUSION: Two compounds 2 and 13 appear to be promising molecules and could be used for the future development of potentiators of the chloride transport defect in cystic fibrosis.


Assuntos
Cloretos/metabolismo , Fibrose Cística/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Transporte Biológico/efeitos dos fármacos , Técnicas de Química Sintética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , Relação Estrutura-Atividade
13.
Curr Med Chem ; 28(17): 3318-3338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33143618

RESUMO

BACKGROUND: Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS: An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS: At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION: All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138251

RESUMO

Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. Different mutations involving the cystic fibrosis transmembrane regulator protein (CFTR) gene, which encodes the CFTR channel, are involved in CF. A number of life-prolonging therapies have been conceived and deeply investigated to combat this disease. Among them, the administration of the so-called CFTR modulators, such as correctors and potentiators, have led to quite beneficial effects. Recently, based on QSAR (quantitative structure activity relationship) studies, we reported the rational design and synthesis of compound 2, an aminoarylthiazole-VX-809 hybrid derivative exhibiting promising F508del-CFTR corrector ability. Herein, we explored the docking mode of the prototype VX-809 as well as of the aforementioned correctors in order to derive useful guidelines for the rational design of further analogues. In addition, we refined our previous QSAR analysis taking into account our first series of in-house hybrids. This allowed us to optimize the QSAR model based on the chemical structure and the potency profile of hybrids as F508del-CFTR correctors, identifying novel molecular descriptors explaining the SAR of the dataset. This study is expected to speed up the discovery process of novel potent CFTR modulators.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Simulação de Acoplamento Molecular , Mutação , Relação Quantitativa Estrutura-Atividade , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos
15.
Eur J Med Chem ; 208: 112833, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971410

RESUMO

Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. It is caused by different mutations in the cystic fibrosis transmembrane regulator protein (CFTR) gene, with F508del being the most common. During the last years, small-molecule therapy chosen to contrast CF relied on compounds that correct CFTR misfolding and ER retention (correctors such as VX-809), or defective channel gating (potentiators such as VX-770). Combination therapy with the two series of drugs has been applied, leading to the approval of several multi-drugs such as Orkambi. Despite this, this treatment proved to be only partially effective making the search for novel modulators an urgent need to contrast CF. Recently, we reported compound 2a as reference compound of a series of aminoarylthiazole-VX-809 hybrid derivatives exhibiting promising F508del-CFTR corrector ability. Herein, we report exploring the docking mode of the prototype VX-809 and of 2a in order to derive useful guidelines for the rational design of novel optimized analogues. To demonstrate experimentally their effective F508del-CFTR-binding and rescuing potential, the most promising derivatives had been synthesized and evaluated in biological assays including YFP functional assay on F508del-CFTR CFBE41o-cells, trans epithelial electrical resistance (TEER) and surface plasmon resonance (SPR). This multidisciplinary strategy led to the discovery of a second series of hybrids including 7j and 7m endowed with higher potency than the prototype.


Assuntos
Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminopiridinas/síntese química , Benzodioxóis/síntese química , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Domínios Proteicos
16.
Mol Divers ; 24(3): 655-671, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240519

RESUMO

Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase regulating important functions: modulators of its enzymatic activity have been considered as possible therapeutic agents. Besides the deacetylase activity, SIRT6 also has NAD+-dependent deacylase activity, whereby it regulates the secretion of cytokines and proteins. We identified novel SIRT6 modulators with a lysine-based structure: compound 1 enhances SIRT6 deacylase while inhibiting the deacetylase activity. As expected based on the biological effects of SIRT6 deacetylase activity, compound 1 increased histone 3 lysine 9 acetylation and the activity of glycolytic enzymes. Moreover, the fact that compound 1 enhanced SIRT6 deacylase activity was accompanied by an increased TNF-α release. In conclusion, new SIRT6 modulators with a lysine-like structure were identified, with differential effects on specific SIRT6 activities. The novel SIRT6 modulator concomitantly inhibits deacetylase and enhances deacylase activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lisina/química , Lisina/farmacologia , Sirtuínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Desenho de Fármacos , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Eur J Med Chem ; 144: 179-200, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29272749

RESUMO

The most common CF mutation, F508del, impairs the processing and gating of CFTR protein. This deletion results in the improper folding of the protein and its degradation before it reaches the plasma membrane of epithelial cells. Present correctors, like VX809 only induce a partial rescue of the mutant protein. Our previous studies reported a class of compounds, called aminoarylthiazoles (AATs), featuring an interesting activity as correctors. Some of them show additive effect with VX809 indicating a different mechanism of action. In an attempt to construct more interesting molecules, it was thought to generate chemically hybrid compounds, blending a portion of VX809 merged to the thiazole scaffold. This approach was guided by the development of QSAR analyses, which were performed based on the F508del correctors so far disclosed in the literature. This strategy was aimed at exploring the key requirements turning in the corrector ability of the collected derivatives and allowed us to derive a predictive model guiding for the synthesis of novel hybrids as promising correctors. The new molecules were tested in functional and biochemical assays on bronchial CFBE41o-cells expressing F508del-CFTR showing a promising corrector activity.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Aminopiridinas/síntese química , Benzodioxóis/síntese química , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Humanos , Relação Quantitativa Estrutura-Atividade , Tiazóis/síntese química
18.
ChemMedChem ; 10(9): 1570-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26213237

RESUMO

Chloroquine is commonly used in the treatment and prevention of malaria, but Plasmodium falciparum, the main species responsible for malaria-related deaths, has developed resistance against this drug. Twenty-seven novel chloroquine (CQ) analogues characterized by a side chain terminated with a bulky basic head group, i.e., octahydro-2H-quinolizine and 1,2,3,4,5,6-hexahydro-1,5-methano-8H-pyrido[1,2-a][1,5]diazocin-8-one, were synthesized and tested for activity against D-10 (CQ-susceptible) and W-2 (CQ-resistant) strains of P. falciparum. Most compounds were found to be active against both strains with nanomolar or sub-micromolar IC50 values. Eleven compounds were found to be 2.7- to 13.4-fold more potent than CQ against the W-2 strain; among them, four cytisine derivatives appear to be of particular interest, as they combine high potency with low cytotoxicity against two human cell lines (HMEC-1 and HepG2) along with easier synthetic accessibility. Replacement of the 4-NH group with a sulfur bridge maintained antiplasmodial activity at a lower level, but produced an improvement in the resistance factor. These compounds warrant further investigation as potential drugs for use in the fight against malaria.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/análogos & derivados , Antimaláricos/síntese química , Técnicas de Química Sintética , Cloroquina/química , Resistência a Medicamentos/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Mol Divers ; 17(3): 409-19, 2013 08.
Artigo em Inglês | MEDLINE | ID: mdl-23585057

RESUMO

Twenty benzimidazole derivatives bearing in position 1 a ([Formula: see text]-tert-amino)alkyl chain (mainly quinolizidin-1-ylmethyl) and in position 2 an aromatic moiety (phenyl, benzyl or benzotriazol-1/2-ylmethyl) were evaluated at the National Cancer Institute (NCI) for anti-proliferative activity against a panel of 60 human cancer cell lines. Four compounds (6, 7, 9 and 10) displayed a large spectrum of activity with [Formula: see text] 10 [Formula: see text] on 24-57 cell lines, while thirteen compounds exhibited sub-micromolar or even nanomolar activity against single cell lines, such as leukemia CCRF-CEM, HL-60 and MOLT-4, CNS cancer SF-268 and, particularly, renal cancer UO-31, sometimes with outstanding selectivity (compounds 5-7, 11, 13 and 18).


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinolizidinas/farmacologia , Antineoplásicos/química , Benzimidazóis/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Quinolizidinas/química , Relação Estrutura-Atividade
20.
J Nat Prod ; 76(4): 727-31, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23461628

RESUMO

(+)-Laburnamine (1), a rare alkaloid extracted from Laburnum anagyroides seeds (∼4 mg from 1 kg), was shown to bind with high affinity (Ki, 293 nM) to the α4ß2 nicotinic receptor subtype, which is, respectively, 126 and 136 times higher than to the α3ß4 (Ki 37 µM) and α7 subtypes (Ki 40 µM). When its ability to release [(3)H]-dopamine from striatal slices was tested in a functional assay, compound 1 behaved as a partial agonist with an EC50 of 5.8 µM and an Emax that was 43% that of nicotine. When incubated with nicotine in the same assay, 1 prevented a maximal effect from being reached.


Assuntos
Alcaloides/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Ligação Competitiva , Corpo Estriado/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Itália , Ligantes , Neostriado/metabolismo , Nicotina/metabolismo , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Sementes/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA