Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Appl Bio Mater ; 7(2): 827-838, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227342

RESUMO

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.


Assuntos
Química Click , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Endossomos
2.
Drug Discov Today ; 28(7): 103616, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196761

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death. Circulating elements have gained significant interest in the diagnosis and prognosis of NSCLC patients. Among these, platelets (PLTs) and their derived extracellular vesicles (P-EVs) are emerging eligible biosources both in terms of number and carriers of genetic materials (RNA, proteins, and lipids). PLTs are mainly produced by the shedding of megakaryocytes and together with P-EVs, participate in a variety of pathological processes including thrombosis, tumor progression, and metastasis. Here, we performed an extensive literature review focusing on PLTs and P-EVs as potential diagnostic, prognostic, and predictive markers for NSCLC patient management.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo , Prognóstico
3.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980174

RESUMO

The treatment of non-small cell lung cancer (NSCLC) has changed dramatically with the advent of immune checkpoint inhibitors (ICIs). Despite encouraging results, their efficacy remains limited to a subgroup of patients. Circulating immune checkpoints in soluble (s) form and associated with extracellular vesicles (EVs) represent promising markers, especially in ICI-based therapeutic settings. We evaluated the prognostic role of PD-L1 and of two B7 family members (B7-H3, B7-H4), both soluble and EV-associated, in a cohort of advanced NSCLC patients treated with first- (n = 56) or second-line (n = 126) ICIs. In treatment-naïve patients, high baseline concentrations of sPD-L1 (>24.2 pg/mL) were linked to worse survival, whereas high levels of sB7-H3 (>0.5 ng/mL) and sB7-H4 (>63.9 pg/mL) were associated with better outcomes. EV characterization confirmed the presence of EVs positive for PD-L1 and B7-H3, while only a small portion of EVs expressed B7-H4. The comparison between biomarker levels at the baseline and in the first radiological assessment under ICI-based treatment showed a significant decrease in EV-PD-L1 and an increase in EV-B7H3 in patients in the disease response to ICIs. Our study shows that sPD-L1, sB7-H3 and sB7-H4 levels are emerging prognostic markers in patients with advanced NSCLC treated with ICIs and suggests potential EV involvement in the disease response to ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Prognóstico
4.
Cells ; 11(22)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429124

RESUMO

Inflammaging is one of the evolutionarily conserved mechanisms underlying aging and is defined as the long-term consequence of the chronic stimulation of the innate immune system. As macrophages are intimately involved in initiating and regulating the inflammatory process, their dysregulation plays major roles in inflammaging. The paracrine factors, and in particular extracellular vesicles (EVs), released by mesenchymal stromal cells (MSCs) retain immunoregulatory effects on innate and adaptive immune responses. In this paper, we demonstrate that EVs derived from MSCs preconditioned with hypoxia inflammatory cytokines exerted an anti-inflammatory role in the context of inflammaging. In this study, macrophages isolated from aged mice presented elevated pro-inflammatory factor levels already in basal conditions compared to the young counterpart, and this pre-activation status increased when cells were challenged with IFN-γ. EVs were able to attenuate the age-associated inflammation, inducing a decrease in the expression of TNF-α, iNOS, and the NADase CD38. Moreover, we demonstrate that EVs counteracted the mitochondrial dysfunction that affected the macrophages, reducing lipid peroxidation and hindering the age-associated impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis. These results indicate that preconditioned MSC-derived EVs might be exploited as new anti-aging therapies in a variety of age-related diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo
5.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682999

RESUMO

The study of circulating cancer-derived components (circulome) is considered the new frontier of liquid biopsy. Despite the recognized role of circulome biomarkers, their comparative molecular profiling is not yet routine. In advanced breast cancer (BC), approximately 40% of hormone-receptor-positive, HER2-negative BC cases harbor druggable PIK3CA mutations suitable for combined alpelisib/fulvestrant treatment. This pilot study investigates PIK3CA mutations in circulating tumor DNA (ctDNA), tumor cells (CTCs), and extracellular vesicles (EVs) with the aim of determining which information on molecular targetable profiling could be recollected in each of them. The in-depth molecular analysis of four BC patients demonstrated, as a proof-of-concept study, that it is possible to retrieve mutational information in the three components. Patient-specific PIK3CA mutations were found in both tissue and ctDNA and in 3/4 cases, as well as in CTCs, in the classical population (large-sized CD45-/EpCAM+/- cells), and/or in the "non-conventional" sub-population (smaller-sized CD44+/EpCAM-/CD45- cells). Consistent mutational profiles of EVs with CTCs suggest that they may have been released by CTCs. This preliminary evidence on the molecular content of the different circulating biomaterials suggests their possible function as a mirror of the intrinsic heterogeneity of BC. Moreover, this study demonstrates, through mutational assessment, the tumor origin of the different CTC sub-populations sustaining the translational value of the circulome for a more comprehensive picture of the disease.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Molécula de Adesão da Célula Epitelial/genética , Feminino , Humanos , Mutação , Células Neoplásicas Circulantes/patologia , Projetos Piloto
6.
Cancers (Basel) ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565446

RESUMO

Great improvement has been made in the diagnosis and therapy of breast cancer patients. However, the identification of biomarkers for early diagnosis, prognosis, therapy assessment and monitoring, including drug resistance and the early detection of micro-metastases, is still lacking. Recently, circulating microRNAs (miRNAs), circulating freely in the blood stream or entrapped in extracellular vesicles (EVs), have been shown to have a potential diagnostic, prognostic or predictive power. In this review, recent findings are summarized, both at a preclinical and clinical level, related to miRNA applicability in the context of breast cancer. Different aspects, including clinical and technical challenges, are discussed, describing the potentialities of miRNA use in breast cancer. Even though more methodological standardized studies conducted in larger and selected patient cohorts are needed to support the effective clinical utility of miRNA as biomarkers, they could represent novel and accessible tools to be transferred into clinical practice.

8.
Stem Cells Transl Med ; 10(12): 1680-1695, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480533

RESUMO

The secretome of mesenchymal stromal cells (MSCs) derived from different tissue sources is considered an innovative therapeutic tool for regenerative medicine. Although adipose tissue-and bone marrow-derived MSCs (ADSCs and BMSCs, respectively) share many biological features, the different tissue origins can be mirrored by variations in their secretory profile, and in particular in the secreted extracellular vesicles (EVs). In this study, we carried out a detailed and comparative characterization of middle- and small-sized EVs (mEVs and sEVs, respectively) released by either ADSCs or BMSCs. Their involvement in an endochondral ossification setting was investigated using ex vivo metatarsal culture models that allowed to explore both blood vessel sprouting and bone growth plate dynamics. Although EVs separated from both cell sources presented similar characteristics in terms of size, concentration, and marker expression, they exhibited different characteristics in terms of protein content and functional effects. ADSC-EVs overexpressed pro-angiogenic factors in comparison to the BMSC-counterpart, and, consequently, they were able to induce a significant increase in endothelial cord outgrowth. On the other hand, BMSC-EVs contained a higher amount of pro-differentiation and chemotactic proteins, and they were able to prompt growth plate organization. The present study highlights the importance of selecting the appropriate cell source of EVs for targeted therapeutic applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tecido Adiposo , Medula Óssea , Proliferação de Células , Células Cultivadas , Condrogênese , Vesículas Extracelulares/metabolismo
9.
Cancers (Basel) ; 13(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34359631

RESUMO

Cardiovascular side effects are major shortcomings of cancer treatments causing cardiotoxicity and late-onset cardiomyopathy. While doxorubicin (Dox) has been reported as an effective chemotherapy agent, unspecific impairment in cardiomyocyte mitochondria activity has been documented. We demonstrated that the human fetal amniotic fluid-stem cell (hAFS) secretome, namely the secreted paracrine factors within the hAFS-conditioned medium (hAFS-CM), exerts pro-survival effects on Dox-exposed cardiomyocytes. Here, we provide a detailed comparison of the cardioprotective potential of hAFS-CM over the secretome of mesenchymal stromal cells from adipose tissue (hMSC-CM). hAFS and hMSC were preconditioned under hypoxia to enrich their secretome. The cardioprotective effects of hAFS/hMSC-CM were evaluated on murine neonatal ventricular cardiomyocytes (mNVCM) and on their fibroblast counterpart (mNVFib), and their long-term paracrine effects were investigated in a mouse model of Dox-induced cardiomyopathy. Both secretomes significantly contributed to preserving mitochondrial metabolism within Dox-injured cardiac cells. hAFS-CM and hMSC-CM inhibited body weight loss, improved myocardial function, reduced lipid peroxidation and counteracted the impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis induced by Dox. The hAFS and hMSC secretomes can be exploited for inhibiting cardiotoxic detrimental side effects of Dox during cancer therapy, thus ensuring cardioprotection via combinatorial paracrine therapy in association with standard oncological treatments.

10.
Biology (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922446

RESUMO

Extracellular vesicles (EVs) are ubiquitous masters of intercellular communication, being detectable in tissues, circulation, and body fluids. Their complex cargo reflects the (patho)physiologic status of the cells from which they originate. Due to these properties, the potential of EVs, and in particular exosomes, to serve as biomarkers or therapeutics has grown exponentially over the past decade. On one side, numerous studies have demonstrated that EV-associated nucleic acids and proteins are implicated in cancer progression, as well as neurodegenerative, infectious, and autoimmune disorders. On the other, the therapeutic use of EVs secreted by various cell types, and in particular stem/progenitor cells, present significant advantages in comparison to the corresponding parental cells, such as the less complex production and storage conditions. In this review, we examine some of the major pre-clinical studies dealing with EVs and exosomes, that led to the development of numerous completed clinical trials.

11.
Biomaterials ; 269: 120633, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33453634

RESUMO

Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly to the environmental signals modulating their secretory activity. An appropriate preconditioning may induce MSCs to release secretomes with an enhanced regenerative potential. However, it fails to take into account that secretomes are composed by both soluble factors and extracellular vesicles (EVs), whose functions could be altered differently by the preconditioning approach. Here we demonstrate that the MSC secretome is strongly modulated by the simultaneous stimulation with hypoxia and pro-inflammatory cytokines, used to mimic the harsh environment present at the site of injury. We observed that the environmental variations strongly influenced the angiogenic potential of the different secretome fractions. Upon inflammation, the pro-angiogenic capacity of the soluble component of the MSC secretome was strongly inhibited, regardless of the oxygen level, while the EV-encapsulated component was not significantly affected by the inflammatory stimuli. These effects were accompanied by the modulation of the secreted proteins. On one hand, inflammation-activated MSCs release proteins mainly involved in the interaction with innate immune cells and in tissue remodeling/repair; on the other hand, when MSCs are not exposed to an inflamed environment, they respond to the different oxygen levels modulating the expression of proteins involved in the angiogenic process. The cargo content (in terms of miRNAs) of the corresponding EV fractions was less sensitive to the influence of the external stimuli. Our findings suggest that the therapeutic efficacy of MSC-based therapies could be enhanced by selecting the appropriate preconditioning approach and carefully discriminating its effects on the different secretome components.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Citocinas , Humanos , Hipóxia , Inflamação
12.
Curr Protoc Stem Cell Biol ; 48(1): e76, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30624011

RESUMO

This unit describes protocols for isolating subpopulations of extracellular vesicles (EVs) purified from human adipose tissue-derived mesenchymal stromal cells by density gradient centrifugation and for characterizing them by flow cytometry (FCM). Determining the optimal strategy for isolating EVs is a critical step toward retrieving the maximal amount while ensuring the recovery of different vesicular subtypes. The first protocol details density gradient centrifugation to isolate both exosomes and microvesicles. In the second protocol, characterization of EV subpopulations by FCM is depicted, taking advantage of non-conventional modalities, in accordance with the latest technical indications. The procedures described here can be easily reproduced and can be employed regardless of the cell type used to obtain EVs. © 2019 by John Wiley & Sons, Inc.


Assuntos
Tecido Adiposo/ultraestrutura , Centrifugação com Gradiente de Concentração/métodos , Exossomos , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/ultraestrutura , Humanos
13.
Stem Cell Res Ther ; 9(1): 300, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409222

RESUMO

BACKGROUND: Restoration of damaged tissues through the activation of endogenous progenitors is an attractive therapeutic option. A deep evaluation of the intrinsic stem/progenitor cell properties as well as the reciprocal interactions with injured environments is of critical importance. METHODS: Here, we show that bone marrow stromal cell antigen 2 (BST2) allows the isolation of a population of circulating progenitors, the circulating healing (CH) cells, characterized by a distinctive core signature. The bone marrow (BM) origin of BST2pos CH cells has been strengthened by the co-expression of leptin receptor, the hallmark of a subpopulation of BM-skeletal stem cells. RESULTS: BST2pos CH cells retained the capacity to (i) respond to injury signals generated by a bone fracture, (ii) modify the expression of cell motility genes following damage, and (iii) react to hepatocyte growth factor-activator (HGFA), an injury-related stimulus sufficient to induce their transition into GALERT, a state in which cells are functionally activated and participate in tissue repair. CONCLUSIONS: Taken together, these results could pave the way for the identification of new strategies to enhance and potentiate endogenous regenerative mechanisms for future therapies.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidases/farmacologia , Cicatrização , Ferimentos e Lesões/patologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Cicatrização/efeitos dos fármacos
14.
Curr Protoc Stem Cell Biol ; 46(1): e55, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29927086

RESUMO

The unit describes protocols for isolating and characterizing extracellular vesicles (EVs) derived from human adipose tissue-derived mesenchymal stromal cells (MSCs). EVs are a mixed population of membrane-surrounded structures with overlapping composition and size. Advances made in recent years have led to a better understanding of the biological role of EVs. In particular, they can be considered key factors responsible for MSC-paracrine activity, mediating their anti-inflammatory effects towards innate immune cells, such as macrophages. The topics comprise description of the MSC-conditioned medium containing vesicles preparation, EV isolation, and characterization mainly by specifically set up flow cytometry and electron microscopy approaches, and in vitro methodologies involved in testing the EV anti-inflammatory capacity. The procedures described here can be easily reproduced and can be employed regardless of the type of progenitor cells used to secrete EVs. © 2018 by John Wiley & Sons, Inc.


Assuntos
Separação Celular/métodos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Anti-Inflamatórios/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Citometria de Fluxo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Endogâmicos C57BL
15.
Adv Drug Deliv Rev ; 129: 285-294, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29357301

RESUMO

Bone tissue has a strong intrinsic regenerative capacity, thanks to a delicate and complex interplay of cellular and molecular processes, which tightly involve the immune system. Pathological settings of anatomical, biomechanical or inflammatory nature may lead to impaired bone healing. Innovative strategies to enhance bone repair, including the delivery of osteoprogenitor cells or of potent cytokines/morphogens, indicate the potential of 'orthobiologics', but are not fully satisfactory. Here, we review different approaches based on the delivery of regenerative cues produced by cells but in cell-free, possibly off-the-shelf configurations. Such strategies exploit the paracrine effect of the secretome of mesenchymal stem/stromal cells, presented in soluble form, shuttled through extracellular vesicles, or embedded within the network of extracellular matrix molecules. In addition to osteoinductive molecules, attention is given to factors targeting the resident immune cells, to reshape inflammatory and immunity processes from scarring to regenerative patterns.


Assuntos
Osso e Ossos/imunologia , Matriz Extracelular/imunologia , Vesículas Extracelulares/imunologia , Células-Tronco Mesenquimais/imunologia , Cicatrização/imunologia , Animais , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-28929099

RESUMO

Although autologous tissue transplantation represents a valid approach for bone repair, it has encountered crucial barriers in therapeutic translation, not least the invasive process necessary for stem cell isolation. In recent years, the scientific community has made significant strides for identifying new treatment options, and great emphasis has been placed on the tight interaction between skeletal and immune system in modulating the outcome of bone repair. Within the context of specific injury environmental cues, the cross talk among inflammatory cells and tissue resident and/or circulating progenitor cells is crucial to finely coordinate repair and remodeling processes. The appropriate modulation of the inflammatory response can now be considered a new trend in the field of regenerative medicine, as it raises the attracting possibility to enhance endogenous progenitor cell functions, finally leading to tissue repair. Therefore, new treatment options have been developed considering the wide spectrum of bone-inflammation interplay, considering in particular the cell intrinsic cues responsible for the modulation of the injured environment. In this review, we will provide a panoramic overview focusing on novel findings developed to uphold endogenous bone repair.

17.
Artigo em Inglês | MEDLINE | ID: mdl-28503549

RESUMO

For repair of chronic or difficult-to-heal tissue lesions and defects, major constraints exist to a broad application of cell therapy and tissue engineering approaches, i.e., transplantation of "ex vivo" expanded autologous stem/progenitor cells, alone or associated with carrier biomaterials. To enable a large number of patients to benefit, new strategies should be considered. One of the main goals of contemporary regenerative medicine is to develop new regenerative therapies, inspired from Mother Nature. In all injured tissues, when platelets are activated by tissue contact, their released factors promote innate immune cell migration to the wound site. Platelet-derived factors and factors secreted by migrating immune cells create an inflammatory microenvironment, in turn, causing the activation of angiogenesis and vasculogenesis processes. Eventually, repair or regeneration of the injured tissue occurs via paracrine signals activating, mobilizing or recruiting to the wound site cells with healing potential, such as stem cells, progenitors, or undifferentiated cells derived from the reprogramming of tissue differentiated cells. This review, largely based on our studies, discusses the identification of new tools, inspired by cellular and molecular mechanisms overseeing physiological tissue healing, that could reactivate dormant endogenous regeneration mechanisms lost during evolution and ontogenesis.

18.
Stem Cells Transl Med ; 6(3): 1018-1028, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186708

RESUMO

Mesenchymal Stem Cells (MSCs) are effective therapeutic agents enhancing the repair of injured tissues mostly through their paracrine activity. Increasing evidences show that besides the secretion of soluble molecules, the release of extracellular vesicles (EVs) represents an alternative mechanism adopted by MSCs. Since macrophages are essential contributors toward the resolution of inflammation, which has emerged as a finely orchestrated process, the aim of the present study was to carry out a detailed characterization of EVs released by human adipose derived-MSCs to investigate their involvement as modulators of MSC anti-inflammatory effects inducing macrophage polarization. The EV-isolation method was based on repeated ultracentrifugations of the medium conditioned by MSC exposed to normoxic or hypoxic conditions (EVNormo and EVHypo ). Both types of EVs were efficiently internalized by responding bone marrow-derived macrophages, eliciting their switch from a M1 to a M2 phenotype. In vivo, following cardiotoxin-induced skeletal muscle damage, EVNormo and EVHypo interacted with macrophages recruited during the initial inflammatory response. In injured and EV-treated muscles, a downregulation of IL6 and the early marker of innate and classical activation Nos2 were concurrent to a significant upregulation of Arg1 and Ym1, late markers of alternative activation, as well as an increased percentage of infiltrating CD206pos cells. These effects, accompanied by an accelerated expression of the myogenic markers Pax7, MyoD, and eMyhc, were even greater following EVHypo administration. Collectively, these data indicate that MSC-EVs possess effective anti-inflammatory properties, making them potential therapeutic agents more handy and safe than MSCs. Stem Cells Translational Medicine 2017 Stem Cells Translational Medicine 2017;6:1018-1028.


Assuntos
Anti-Inflamatórios/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Inflamação/metabolismo , Inflamação/terapia , Macrófagos/fisiologia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
19.
Cell Cycle ; 15(18): 2420-30, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27494068

RESUMO

21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems.


Assuntos
Elementos Alu/genética , Regulação para Baixo/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA não Traduzido/genética , Regeneração , Adolescente , Adulto , Animais , Calcificação Fisiológica , Carcinogênese/patologia , Desdiferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Coristoma/patologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Neovascularização Fisiológica , Neuroblastoma/patologia , Osteogênese , RNA Antissenso/genética , RNA não Traduzido/metabolismo , Transfecção , Adulto Jovem
20.
Stem Cells Dev ; 23(16): 1858-69, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24720766

RESUMO

Wound healing is achieved through distinct programmed phases: hemostasis, inflammation, mesenchymal cell proliferation and migration, and tissue remodeling. At the injury site, clot formation and platelet degranulation release cytokines and growth factors and actively participating in the healing process and regulating the migration of inflammatory cells, such as neutrophils, macrophages, and lymphocytes. We previously demonstrated that, in an inflammatory environment, prostaglandin E2 (PGE2) secreted by mesenchymal stem cells (MSCs) promoted the macrophage switch from a proinflammatory to a proresolving phenotype. Using an in vitro model, we here evaluated the role carried out by the two main players of the wound healing process, the platelet degranulation content mimicked by the platelet lysate (PL) and the inflammatory stimulus, on the modulation of mouse bone-marrow-derived MSC paracrine activity. We demonstrated that, in MSCs, PL induced nuclear factor kappaB (NF-κB) activation, expression of COX-2 and mPGE synthase, and PGE2 production; in an inflammatory microenvironment, PL increased the inflammatory response and promoted the secretion of the proinflammatory cytokine IL-6. We assayed on mouse primary macrophages the paracrine activity of MSCs exposed to the different microenvironments and we observed that PL-treated MSC-conditioned medium maintained macrophages in a proinflammatory state. The involved factors were granulocyte macrophage-colony stimulating factor induced by PL in MSCs and TNF-α induced by PL-MSC-conditioned medium in macrophages. Our findings indicate that PL triggers an inflammatory response in MSCs and induces the secretion of factors maintaining macrophages in a proinflammatory state thus enhancing the initial inflammatory response to the injury, a key element in the activation of wound healing.


Assuntos
Plaquetas/fisiologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Inflamação , Interleucina-1alfa/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Comunicação Parácrina , Fenótipo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA