Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961473

RESUMO

Sleep is an evolutionarily conserved behavior, whose function is unknown. Here, we present a method for deep phenotyping of sleep in Drosophila, consisting of a high-resolution video imaging system, coupled with closed-loop laser perturbation to measure arousal threshold. To quantify sleep-associated microbehaviors, we trained a deep-learning network to annotate body parts in freely moving flies and developed a semi-supervised computational pipeline to classify behaviors. Quiescent flies exhibit a rich repertoire of microbehaviors, including proboscis pumping (PP) and haltere switches, which vary dynamically across the night. Using this system, we characterized the effects of optogenetically activating two putative sleep circuits. These data reveal that activating dFB neurons produces micromovements, inconsistent with sleep, while activating R5 neurons triggers PP followed by behavioral quiescence. Our findings suggest that sleep in Drosophila is polyphasic with different stages and set the stage for a rigorous analysis of sleep and other behaviors in this species.

2.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35639618

RESUMO

Evolutionary conservation is a fundamental resource for predicting the substitutability of amino acids and the loss of function in proteins. The use of multiple sequence alignment alone-without considering the evolutionary relationships among sequences-results in the redundant counting of evolutionarily related alteration events, as if they were independent. Here, we propose a new method, PHACT, that predicts the pathogenicity of missense mutations directly from the phylogenetic tree of proteins. PHACT travels through the nodes of the phylogenetic tree and evaluates the deleteriousness of a substitution based on the probability differences of ancestral amino acids between neighboring nodes in the tree. Moreover, PHACT assigns weights to each node in the tree based on their distance to the query organism. For each potential amino acid substitution, the algorithm generates a score that is used to calculate the effect of substitution on protein function. To analyze the predictive performance of PHACT, we performed various experiments over the subsets of two datasets that include 3,023 proteins and 61,662 variants in total. The experiments demonstrated that our method outperformed the widely used pathogenicity prediction tools (i.e., SIFT and PolyPhen-2) and achieved a better predictive performance than other conventional statistical approaches presented in dbNSFP. The PHACT source code is available at https://github.com/CompGenomeLab/PHACT.


Assuntos
Mutação de Sentido Incorreto , Software , Aminoácidos , Filogenia , Proteínas/química , Proteínas/genética , Alinhamento de Sequência
3.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1760-1771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33382660

RESUMO

Although miRNAs can cause widespread changes in expression programs, single miRNAs typically induce mild repression on their targets. Cooperativity among miRNAs is reported as one strategy to overcome this constraint. Expanding the catalog of synergistic miRNAs is critical for understanding gene regulation and for developing miRNA-based therapeutics. In this study, we develop miRCoop to identify synergistic miRNA pairs that have weak or no repression on the target mRNA individually, but when act together, induce strong repression. miRCoop uses kernel-based statistical interaction tests, together with miRNA and mRNA target information. We apply our approach to patient data of two different cancer types. In kidney cancer, we identify 66 putative triplets. For 64 of these triplets, there is at least one common transcription factor that potentially regulates all participating RNAs of the triplet, supporting a functional association among them. Furthermore, we find that identified triplets are enriched for certain biological processes that are relevant to kidney cancer. Some of the synergistic miRNAs are very closely encoded in the genome, hinting a functional association among them. In applying the method on tumor data with the primary liver site, we find 3105 potential triplet interactions. We believe miRCoop can aid our understanding of the complex regulatory interactions in different health and disease states of the cell and can help in designing miRNA-based therapies. Matlab code for the methodology is provided in https://github.com/guldenolgun/miRCoop.


Assuntos
Neoplasias Renais , MicroRNAs , Software , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Renais/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição
4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2334-2344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34086576

RESUMO

Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to  âˆ¼ 15% correlation and  âˆ¼ 33% mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker.


Assuntos
Aprendizado Profundo , Neoplasias , Biologia Computacional/métodos , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias/genética
5.
Bioinformatics ; 40(5)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718189

RESUMO

MOTIVATION: Combination drug therapies are effective treatments for cancer. However, the genetic heterogeneity of the patients and exponentially large space of drug pairings pose significant challenges for finding the right combination for a specific patient. Current in silico prediction methods can be instrumental in reducing the vast number of candidate drug combinations. However, existing powerful methods are trained with cancer cell line gene expression data, which limits their applicability in clinical settings. While synergy measurements on cell line models are available at large scale, patient-derived samples are too few to train a complex model. On the other hand, patient-specific single-drug response data are relatively more available. RESULTS: In this work, we propose a deep learning framework, Personalized Deep Synergy Predictor (PDSP), that enables us to use the patient-specific single drug response data for customizing patient drug synergy predictions. PDSP is first trained to learn synergy scores of drug pairs and their single drug responses for a given cell line using drug structures and large scale cell line gene expression data. Then, the model is fine-tuned for patients with their patient gene expression data and associated single drug response measured on the patient ex vivo samples. In this study, we evaluate PDSP on data from three leukemia patients and observe that it improves the prediction accuracy by 27% compared to models trained on cancer cell line data. AVAILABILITY AND IMPLEMENTATION: PDSP is available at https://github.com/hikuru/PDSP.

6.
BMC Bioinformatics ; 22(1): 294, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078267

RESUMO

BACKGROUND: While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint at a functional association. RESULTS: We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast. CONCLUSIONS: NoRCE is a platform-independent, user-friendly, comprehensive R package that can be used to gain insight into the functional importance of a list of ncRNAs of any type. The tool offers flexibility to conduct the users' preferred set of analyses by designing their own pipeline of analysis. NoRCE is available in Bioconductor and https://github.com/guldenolgun/NoRCE .


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Genoma , Camundongos , RNA não Traduzido/genética , Ratos , Peixe-Zebra/genética
7.
PLoS Comput Biol ; 17(5): e1008998, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038408

RESUMO

Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins' expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein's expression level with other proteins' levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER's performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER.


Assuntos
Biologia Computacional/métodos , Proteínas/metabolismo , Biomarcadores/metabolismo , Prognóstico , Mapas de Interação de Proteínas
8.
Bioinformatics ; 36(21): 5237-5246, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32730565

RESUMO

MOTIVATION: Accurate classification of patients into molecular subgroups is critical for the development of effective therapeutics and for deciphering what drives these subgroups to cancer. The availability of multiomics data catalogs for large cohorts of cancer patients provides multiple views into the molecular biology of the tumors with unprecedented resolution. RESULTS: We develop Pathway-based MultiOmic Graph Kernel clustering (PAMOGK) that integrates multiomics patient data with existing biological knowledge on pathways. We develop a novel graph kernel that evaluates patient similarities based on a single molecular alteration type in the context of a pathway. To corroborate multiple views of patients evaluated by hundreds of pathways and molecular alteration combinations, we use multiview kernel clustering. Applying PAMOGK to kidney renal clear cell carcinoma (KIRC) patients results in four clusters with significantly different survival times (P-value =1.24e-11). When we compare PAMOGK to eight other state-of-the-art multiomics clustering methods, PAMOGK consistently outperforms these in terms of its ability to partition KIRC patients into groups with different survival distributions. The discovered patient subgroups also differ with respect to other clinical parameters such as tumor stage and grade, and primary tumor and metastasis tumor spreads. The pathways identified as important are highly relevant to KIRC. AVAILABILITY AND IMPLEMENTATION: github.com/tastanlab/pamogk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Neoplasias , Análise por Conglomerados , Humanos , Neoplasias/genética
9.
Bioinformatics ; 36(12): 3652-3661, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044914

RESUMO

MOTIVATION: Protein phosphorylation is a key regulator of protein function in signal transduction pathways. Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target-specific manner. The dysregulation of phosphorylation is associated with many diseases including cancer. Although the advances in phosphoproteomics enable the identification of phosphosites at the proteome level, most of the phosphoproteome is still in the dark: more than 95% of the reported human phosphosites have no known kinases. Determining which kinase is responsible for phosphorylating a site remains an experimental challenge. Existing computational methods require several examples of known targets of a kinase to make accurate kinase-specific predictions, yet for a large body of kinases, only a few or no target sites are reported. RESULTS: We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting on a phosphosite for kinases with no known phosphosite information. DeepKinZero transfers knowledge from kinases with many known target phosphosites to those kinases with no known sites through a zero-shot learning model. The kinase-specific positional amino acid preferences are learned using a bidirectional recurrent neural network. We show that DeepKinZero achieves significant improvement in accuracy for kinases with no known phosphosites in comparison to the baseline model and other methods available. By expanding our knowledge on understudied kinases, DeepKinZero can help to chart the phosphoproteome atlas. AVAILABILITY AND IMPLEMENTATION: The source codes are available at https://github.com/Tastanlab/DeepKinZero. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fosfoproteínas , Fosfotransferases , Humanos , Fosfoproteínas/metabolismo , Fosforilação , Proteoma , Software
10.
BMC Genomics ; 19(1): 650, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180792

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) can indirectly regulate mRNAs expression levels by sequestering microRNAs (miRNAs), and act as competing endogenous RNAs (ceRNAs) or as sponges. Previous studies identified lncRNA-mediated sponge interactions in various cancers including the breast cancer. However, breast cancer subtypes are quite distinct in terms of their molecular profiles; therefore, ceRNAs are expected to be subtype-specific as well. RESULTS: To find lncRNA-mediated ceRNA interactions in breast cancer subtypes, we develop an integrative approach. We conduct partial correlation analysis and kernel independence tests on patient gene expression profiles and further refine the candidate interactions with miRNA target information. We find that although there are sponges common to multiple subtypes, there are also distinct subtype-specific interactions. Functional enrichment of mRNAs that participate in these interactions highlights distinct biological processes for different subtypes. Interestingly, some of the ceRNAs also reside in close proximity in the genome; for example, those involving HOX genes, HOTAIR, miR-196a-1 and miR-196a-2. We also discover subtype-specific sponge interactions with high prognostic potential. We found that patients differ significantly in their survival distributions if they are group based on the expression patterns of specific ceRNA interactions. However, it is not the case if the expression of individual RNAs participating in ceRNA is used. CONCLUSION: These results can help shed light on subtype-specific mechanisms of breast cancer, and the methodology developed herein can help uncover sponges in other diseases.


Assuntos
Neoplasias da Mama/genética , Carcinoma Basocelular/genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Receptor ErbB-2/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/classificação , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Taxa de Sobrevida
11.
Circulation ; 131(6): 536-49, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25533967

RESUMO

BACKGROUND: Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. METHODS AND RESULTS: We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10(-8)) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. CONCLUSIONS: Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD.


Assuntos
Doenças Cardiovasculares/genética , Redes Reguladoras de Genes/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Adulto , Mapeamento Cromossômico , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 1/genética , Feminino , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/genética , Lipoproteínas HDL/genética , Lipoproteínas LDL/genética , Masculino , Fenótipo , Fatores de Risco , Fumar/genética
12.
Int J Comput Biol Drug Des ; 4(1): 83-105, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21330695

RESUMO

Viruses depend on their hosts at every stage of their life cycles and must therefore communicate with them via Protein-Protein Interactions (PPIs). To investigate the mechanisms of communication by different viruses, we overlay reported pairwise human-virus PPIs on human signalling pathways. Of 671 pathways obtained from NCI and Reactome databases, 355 are potentially targeted by at least one virus. The majority of pathways are linked to more than one virus. We find evidence supporting the hypothesis that viruses often interact with different proteins depending on the targeted pathway. Pathway analysis indicates overrepresentation of some pathways targeted by viruses. The merged network of the most statistically significant pathways shows several centrally located proteins, which are also hub proteins. Generally, hub proteins are targeted more frequently by viruses. Numerous proteins in virus-targeted pathways are known drug targets, suggesting that these might be exploited as potential new approaches to treatments against multiple viruses.


Assuntos
Interações Hospedeiro-Patógeno , Transdução de Sinais , Biologia de Sistemas/métodos , Viroses/metabolismo , Viroses/virologia , HIV-1/fisiologia , Humanos , Mapeamento de Interação de Proteínas , Fenômenos Fisiológicos Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA