Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 867928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860632

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of compounds, self-masked aldehyde inhibitors (SMAIs) which are based on the dipeptide aldehyde inhibitor (Cbz-Phe-Phe-CHO, 1), for which the P1 Phe group contains a 1'-hydroxy group, effectively, an o-tyrosinyl aldehyde (Cbz-Phe-o-Tyr-CHO, 2; (Li et al. (2021) J. Med. Chem. 64, 11,267-11,287)). Compound 2 and other SMAIs exist in aqueous mixtures as stable δ-lactols, and apparent catalysis by the cysteine protease cruzain, the major cysteine protease of Trypanosoma cruzi, results in the opening of the lactol ring to afford the aldehydes which then form reversible thiohemiacetals with the enzyme. These SMAIs are also potent, time-dependent inhibitors of human cathepsin L (K i = 11-60 nM), an enzyme which shares 36% amino acid identity with cruzain. As inactivators of cathepsin L have recently been shown to be potent anti-SARS-CoV-2 agents in infected mammalian cells (Mellott et al. (2021) ACS Chem. Biol. 16, 642-650), we evaluated SMAIs in VeroE6 and A549/ACE2 cells infected with SARS-CoV-2. These SMAIs demonstrated potent anti-SARS-CoV-2 activity with values of EC50 = 2-8 µM. We also synthesized pro-drug forms of the SMAIs in which the hydroxyl groups of the lactols were O-acylated. Such pro-drug SMAIs resulted in significantly enhanced anti-SARS-CoV-2 activity (EC50 = 0.3-0.6 µM), demonstrating that the O-acylated-SMAIs afforded a level of stability within infected cells, and are likely converted to SMAIs by the action of cellular esterases. Lastly, we prepared and characterized an SMAI in which the sidechain adjacent to the terminal aldehyde is a 2-pyridonyl-alanine group, a mimic of both phenylalanine and glutamine. This compound (9) inhibited both cathepsin L and 3CL protease at low nanomolar concentrations, and also exerted anti-CoV-2 activity in an infected human cell line.

2.
mBio ; 13(4): e0182222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35900097

RESUMO

The U.S. Food and Drug Administration-authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected in two doses and effective in preventing COVID-19, but they do not induce efficient mucosal immunity or prevent viral transmission. Here, we report the first noninfectious, bacteriophage T4-based, multicomponent, needle- and adjuvant-free, mucosal vaccine harboring engineered Spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of two doses of this T4 SARS-CoV-2 vaccine 21 days apart induced robust mucosal immunity, in addition to strong systemic humoral and cellular immune responses. The intranasal vaccine induced broad virus neutralization antibody titers against multiple variants, Th1-biased cytokine responses, strong CD4+ and CD8+ T cell immunity, and high secretory IgA titers in sera and bronchoalveolar lavage specimens from vaccinated mice. All of these responses were much stronger in intranasally vaccinated mice than those induced by the injected vaccine. Furthermore, the nasal vaccine provided complete protection and sterilizing immunity against the mouse-adapted SARS-CoV-2 MA10 strain, the ancestral WA-1/2020 strain, and the most lethal Delta variant in both BALB/c and human angiotensin converting enzyme (hACE2) knock-in transgenic mouse models. In addition, the vaccine elicited virus-neutralizing antibodies against SARS-CoV-2 variants in bronchoalveolar lavage specimens, did not affect the gut microbiota, exhibited minimal lung lesions in vaccinated and challenged mice, and is completely stable at ambient temperature. This modular, needle-free, phage T4 mucosal vaccine delivery platform is therefore an excellent candidate for designing efficacious mucosal vaccines against other respiratory infections and for emergency preparedness against emerging epidemic and pandemic pathogens. IMPORTANCE According to the World Health Organization, COVID-19 may have caused ~15-million deaths across the globe and is still ravaging the world. Another wave of ~100 million infections is predicted in the United States due to the emergence of highly transmissible immune-escaped Omicron variants. The authorized vaccines would not prevent these transmissions since they do not trigger mucosal immunity. We circumvented this limitation by developing a needle-free, bacteriophage T4-based, mucosal vaccine. This intranasally administered vaccine generates superior mucosal immunity in mice, in addition to inducing robust humoral and cell-mediated immune responses, and provides complete protection and sterilizing immunity against SARS-CoV-2 variants. The vaccine is stable, adjuvant-free, and cost-effectively manufactured and distributed, making it a strategically important next-generation COVID vaccine for ending this pandemic.


Assuntos
Bacteriófagos , COVID-19 , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
3.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33787221

RESUMO

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Fenilalanina/farmacologia , Piperazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Compostos de Tosil/farmacologia , Animais , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteólise , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos
4.
bioRxiv ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33140046

RESUMO

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 µM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 µM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA