Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38004621

RESUMO

Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the potential of novel hybrid lipid nanoparticles, composed of biocompatible zein and conjugated to the cancer-targeting ligand transferrin. These nanoparticles were designed to entrap the anti-cancer drug docetaxel and carry plasmid DNA, with the objective of improving the delivery of therapeutic payloads to prostate cancer cells, thereby enhancing their anti-proliferative efficacy and gene expression levels. These transferrin-bearing, zein-based hybrid lipid nanoparticles efficiently entrapped docetaxel, leading to increased uptake by PC-3 and LNCaP cancer cells and significantly enhancing anti-proliferative efficacy at docetaxel concentrations exceeding 1 µg/mL. Furthermore, they demonstrated proficient DNA condensation, exceeding 80% at polymer-DNA weight ratios of 1500:1 and 2000:1. This resulted in increased gene expression across all tested cell lines, with the highest transfection levels up to 11-fold higher than those observed with controls, in LNCaP cells. These novel transferrin-bearing, zein-based hybrid lipid nanoparticles therefore exhibit promising potential as drug and gene delivery systems for prostate cancer therapy.

2.
Front Cell Neurosci ; 16: 917181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936502

RESUMO

Dax-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital region on X-chromosome gene 1) blocks 17ß-estradiol biosynthesis and its knockdown would be expected to increase 17ß-estradiol production. We hypothesized that knockdown of Dax-1 in a conditionally immortalized neural stem cell (NSC) line, MHP36, is a useful approach to increase 17ß-estradiol production. Short hairpin (sh) RNA targeted to Dax-1 in NSCs, namely MHP36-Dax1KD cells, resulted in the degradation of Dax-1 RNA and attenuation of Dax-1 protein expression. In vitro, MHP36-Dax1KD cells exhibited overexpression of aromatase and increased 17ß-estradiol secretion compared to MHP36 cells. As 17ß-estradiol has been shown to promote the efficacy of cell therapy, we interrogated the application of 17ß-estradiol-enriched NSCs in a relevant in vivo disease model. We hypothesized that MHP36-Dax1KD cells will enhance functional recovery after transplantation in a stroke model. C57BL/6 male adult mice underwent ischemia/reperfusion by left middle cerebral artery occlusion for 45 min using an intraluminal thread. Two days later male mice randomly received vehicle, MHP36 cells, MHP36-Dax1KD cells, and MHP36 cells suspended in 17ß-estradiol (100 nm) or 17ß-estradiol alone (100 nm) with serial behavioral testing over 28 days followed by post-mortem histology and blinded analysis. Recovery of sensorimotor function was accelerated and enhanced, and lesion volume was reduced by MHP36-Dax1KD transplants. Regarding mechanisms, immunofluorescence indicated increased synaptic plasticity and neuronal differentiation after MHP36-Dax1KD transplants. In conclusion, knockdown of Dax-1 is a useful target to increase 17ß-estradiol biosynthesis in NSCs and improves functional recovery after stroke in vivo, possibly mediated through neuroprotection and improved synaptic plasticity. Therefore, targeting 17ß-estradiol biosynthesis in stem cells may be a promising therapeutic strategy for enhancing the efficacy of stem cell-based therapies for stroke.

3.
Int J Nanomedicine ; 17: 1409-1421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369035

RESUMO

Background: The use of gene therapy to treat prostate cancer is hampered by the lack of effective nanocarriers that can selectively deliver therapeutic genes to cancer cells. To overcome this, we hypothesize that conjugating lactoferrin, a tumor-targeting ligand, and the diaminobutyric polypropylenimine dendrimer into gold nanocages, followed by complexation with a plasmid DNA, would enhance gene expression and anti-proliferation activity in prostate cancer cells without the use of external stimuli. Methods: Novel gold nanocages bearing lactoferrin and conjugated to diaminobutyric polypropylenimine dendrimer (AuNCs-DAB-Lf) were synthesized and characterized. Following complexation with a plasmid DNA, their gene expression, cellular uptake and anti-proliferative efficacies were evaluated on PC-3 prostate cancer cells. Results: AuNCs-DAB-Lf was able to complex DNA at conjugate: DNA weight ratios 5:1 onwards. Gene expression was at its highest after treatment with AuNCs-DAB-Lf at a weight ratio of 10:1, as a result of a significant increase in DNA uptake mediated by the conjugate at that ratio in PC-3 cells. Consequently, the anti-proliferative activity of AuNCs-DAB-Lf-DNA encoding TNFα was significantly improved by up to 9-fold compared with DAB dendriplex encoding TNFα. Conclusion: Lactoferrin-bearing dendrimer-conjugated gold nanocages are highly promising gene delivery systems for the treatment of prostate cancer.


Assuntos
Dendrímeros , Neoplasias da Próstata , DNA/genética , Técnicas de Transferência de Genes , Humanos , Lactoferrina/genética , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia
4.
Int J Nanomedicine ; 16: 4391-4407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234433

RESUMO

BACKGROUND: Gold nanocages have been widely used as multifunctional platforms for drug and gene delivery, as well as photothermal agents for cancer therapy. However, their potential as gene delivery systems for cancer treatment has been reported in combination with chemotherapeutics and photothermal therapy, but not in isolation so far. The purpose of this work was to investigate whether the conjugation of gold nanocages with the cancer targeting ligand lactoferrin, polyethylene glycol and polyethylenimine could lead to enhanced transfection efficiency on prostate cancer cells in vitro, without assistance of external stimulation. METHODS: Novel lactoferrin-bearing gold nanocages conjugated to polyethylenimine and polyethylene glycol have been synthesized and characterized. Their transfection efficacy and cytotoxicity were assessed on PC-3 prostate cancer cell line following complexation with a plasmid DNA. RESULTS: Lactoferrin-bearing gold nanocages, alone or conjugated with polyethylenimine and polyethylene glycol, were able to condense DNA at conjugate:DNA weight ratios 5:1 and higher. Among all gold conjugates, the highest gene expression was obtained following treatment with gold complex conjugated with polyethylenimine and lactoferrin, at weight ratio 40:1, which was 1.71-fold higher than with polyethylenimine. This might be due to the increased DNA cellular uptake observed with this conjugate, by up to 8.65-fold in comparison with naked DNA. CONCLUSION: Lactoferrin-bearing gold nanocages conjugates are highly promising gene delivery systems to prostate cancer cells.


Assuntos
Portadores de Fármacos/química , Técnicas de Transferência de Genes , Ouro/química , Lactoferrina/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , DNA/administração & dosagem , DNA/química , DNA/genética , Terapia Genética , Humanos , Masculino , Plasmídeos/genética , Polietilenoglicóis/química , Polietilenoimina/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Transfecção
5.
J Biol Chem ; 296: 100674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865856

RESUMO

The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Lisofosfolipídeos/metabolismo , Microdomínios da Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Esfingosina/metabolismo
6.
Biomater Sci ; 9(4): 1431-1448, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404026

RESUMO

Stimuli-responsive nanocarriers have become increasingly important for nucleic acid and drug delivery in cancer therapy. Here, we report the synthesis, characterization and evaluation of disulphide-linked, octadecyl (C18 alkyl) chain-bearing PEGylated generation 3-diaminobutyric polypropylenimine dendrimer-based vesicles (or dendrimersomes) for gene delivery. The lipid-bearing PEGylated dendrimer was successfully synthesized through in situ two-step reaction. It was able to spontaneously self-assemble into stable, cationic, nanosized vesicles, with low critical aggregation concentration value, and also showed redox-responsiveness in presence of a glutathione concentration similar to that of the cytosolic reducing environment. In addition, it was able to condense more than 70% of DNA at dendrimer: DNA weight ratios of 5 : 1 and higher. This dendriplex resulted in an enhanced cellular uptake of DNA at dendrimer: DNA weight ratios of 10 : 1 and 20 : 1, by up to 16-fold and by up to 28-fold compared with naked DNA in PC-3 and DU145 prostate cancer cell lines respectively. At a dendrimer: DNA weight ratio of 20 : 1, it led to an increase in gene expression in PC-3 and DU145 cells, compared with DAB dendriplex. These octadecyl chain-bearing, PEGylated dendrimer-based vesicles are therefore promising redox-sensitive drug and gene delivery systems for potential applications in combination cancer therapy.


Assuntos
Dendrímeros , Neoplasias , DNA/genética , Técnicas de Transferência de Genes , Humanos , Masculino , Oxirredução , Polietilenoglicóis , Polipropilenos
7.
Nanoscale ; 11(42): 20058-20071, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31612185

RESUMO

Combination therapy involving chemotherapeutic drugs and genes is emerging as a promising strategy to provide a synergistic therapeutic effect, to overcome drug resistance while reducing the severe side effects associated with conventional chemotherapeutic drugs. However, the lack of nanomedicines able to simultaneously carry anti-cancer drugs and nucleic acids limits the application of this therapeutic strategy. To overcome this issue, we proposed to synthesize a pro-drug dendrimer by conjugating the PEGylated, positively charged generation 3-diaminobutyric polypropylenimine dendrimer to the anti-cancer drug camptothecin with a redox-sensitive disulphide linkage, and evaluate its efficacy to co-deliver the complexed DNA and camptothecin to cancer cells. This PEGylated pro-drug dendrimer was found to spontaneously self-assemble into cationic (∼3-5 mV) vesicles at pH 7.4, at a critical aggregation concentration of about 200 µg mL-1. These vesicles (dendrimersomes) became smaller (150-200 nm) with increasing dendrimer concentration and remained stable over 7 days. They were able to release about 70% of the conjugated camptothecin in presence of 50 mM glutathione (equivalent to the intracellular environment of tumor tissue). They could also condense more than 85% of the DNA at dendrimer : DNA weight ratios of 5 : 1 and higher. DNA condensation occurred instantly and was found to be stable for at least 24 h. This led to an enhanced cellular uptake of DNA (by up to 1.6-fold) and increased gene transfection (by up to 2.4-fold) in prostate cancer cells in comparison with the unmodified dendrimer. These novel dendrimersomes are therefore promising for single carrier-based combination cancer therapy.


Assuntos
Camptotecina , Dendrímeros , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Técnicas de Transferência de Genes , Neoplasias da Próstata , Camptotecina/química , Camptotecina/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia
8.
Ther Deliv ; 10(1): 37-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730823

RESUMO

Exosomes are nanovesicles secreted by many cells, including cancer cells. Extensive research has been carried out to validate potential applications of exosomes and to evaluate their efficiency in a wide range of diseases, including cancer. The current knowledge on the origin, biogenesis and composition of exosomes is described. This review then focuses on the use of exosomes in cancer diagnostics and therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Exossomos , Neoplasias/tratamento farmacológico , Progressão da Doença , Composição de Medicamentos , Humanos , Nanopartículas , Neoplasias/diagnóstico , Neoplasias/patologia , Microambiente Tumoral
9.
J Liposome Res ; 29(3): 229-238, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30296860

RESUMO

RNA interference is an effective and naturally occurring post-transcriptional gene regulatory mechanism. This mechanism involves the degradation of a target messenger RNA (mRNA) through the introduction of short interfering RNA (siRNA) that is complementary to the target mRNA. The application of siRNA-based therapeutics is limited by the development of an effective delivery system, as naked siRNA is unstable and cannot penetrate the cell membrane. In this study, we investigated the use of cationic niosomes (CN) prepared by microfluidic mixing for siRNA delivery. In an in vitro model, these vesicles were able to deliver anti-luciferase siRNA and effectively suppress luciferase expression in B16-F10 mouse melanoma cells. More importantly, in an in vivo mouse model, intratumoral administration of CN-carrying anti-luciferase siRNA led to significant suppression of luciferase expression compared with naked siRNA. Thus, we have established a novel and effective system for the delivery of siRNA both in vitro and in vivo, which shows high potential for future application of gene therapeutics.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Lipossomos/química , Nanocápsulas/química , RNA Interferente Pequeno/administração & dosagem , Tensoativos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Inativação Gênica , Técnicas de Transferência de Genes , Luciferases/genética , Luciferases/metabolismo , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estudo de Prova de Conceito , RNA Interferente Pequeno/metabolismo
10.
Nanoscale ; 10(48): 22830-22847, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30488937

RESUMO

Stimuli-responsive nanocarriers have attracted increased attention as materials that can facilitate drug and gene delivery in cancer therapy. The present study reports the development of redox-sensitive dendrimersomes comprising disulfide-linked cholesterol-bearing PEGylated dendrimers, which can be used as drug and gene delivery systems. Two disulfide-linked cholesterol-bearing PEGylated generation 3 diaminobutyric polypropylenimine dendrimers have been successfully synthesized via an in situ two-step reaction. They were able to spontaneously self-assemble into stable, cationic, nanosized vesicles (or dendrimersomes) with lower critical aggregation concentration values for high-cholesterol-bearing vesicles. These dendrimersomes were able to entrap both hydrophilic and hydrophobic dyes, and they also showed a redox-responsive sustained release of the entrapped guests in the presence of a glutathione concentration similar to that of a cytosolic reducing environment. The high-cholesterol-bearing dendrimersomes were found to have a higher melting enthalpy, increased adsorption tendency on mica surface, entrapping ability for a larger amount of hydrophobic drugs, and increased resistance to redox-responsive environments in comparison with their low-cholesterol counterpart. In addition, both dendrimersomes were able to condense more than 85% of the DNA at all the tested ratios for the low-cholesterol vesicles, and at dendrimer : DNA weight ratios of 1 : 1 and higher for the high-cholesterol vesicles. These vesicles resulted in an enhanced cellular uptake of DNA, by up to 15-fold when compared with naked DNA with low-cholesterol vesicles. As a result, they increased the gene transfection on the PC-3 prostate cancer cell line, with the highest transfection being obtained with low-cholesterol vesicle complexes at a dendrimer : DNA weight ratio of 5 : 1 and high-cholesterol vesicle complexes at a dendrimer : DNA weight ratio of 10 : 1. These transfection levels were about 5-fold higher than those observed when treated with naked DNA. These cholesterol-bearing PEGylated dendrimer-based vesicles are, therefore, promising as redox-sensitive drugs and gene delivery systems for potential applications in combination cancer therapies.


Assuntos
Colesterol , Dendrímeros , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Polietilenoglicóis , Polipropilenos , Neoplasias da Próstata , Linhagem Celular Tumoral , Colesterol/química , Colesterol/farmacocinética , Colesterol/farmacologia , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/farmacologia , Humanos , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia
11.
Oncotarget ; 9(50): 29453-29467, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30034630

RESUMO

We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells.

12.
Drug Deliv ; 25(1): 679-689, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29493296

RESUMO

The possibility of using gene therapy for the treatment of prostate cancer is limited by the lack of intravenously administered delivery systems able to safely and selectively deliver therapeutic genes to tumors. Given that lactoferrin (Lf) receptors are overexpressed on prostate cancer cells, we hypothesized that the conjugation of Lf to generation 3-diaminobutyric polypropylenimine dendrimer would improve its transfection and therapeutic efficacy in prostate cancer cells. In this study, we demonstrated that the intravenous administration of Lf-bearing DAB dendriplexes encoding TNFα resulted in the complete suppression of 70% of PC-3 and 50% of DU145 tumors over one month. Treatment with DAB-Lf dendriplex encoding TRAIL led to tumor suppression of 40% of PC-3 tumors and 20% of DU145 tumors. The treatment was well tolerated by the animals. Lf-bearing generation 3-polypropylenimine dendrimer is therefore a highly promising delivery system for non-viral gene therapy of prostate cancer.


Assuntos
Interleucina-12/administração & dosagem , Lactoferrina/administração & dosagem , Polipropilenos/administração & dosagem , Neoplasias da Próstata/terapia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Fator de Necrose Tumoral alfa/administração & dosagem , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Terapia Genética/métodos , Humanos , Interleucina-12/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Necrose Tumoral alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Mol Pharm ; 14(7): 2450-2458, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28570823

RESUMO

Small interfering RNAs (siRNA) have a broad potential as therapeutic agents to reversibly silence any target gene of interest. The clinical application of siRNA requires the use of safe and effective delivery systems. In this study, we investigated the use of nonionic surfactant vesicles (NISV) for the delivery of siRNA. Different types of NISV formulations were synthesized by microfluidic mixing and then evaluated for their physiochemical properties and cytotoxicity. The ability of the NISV to carry and transfect siRNA targeting green fluorescent protein (GFP) into A549 that stably express GFP (copGFP-A549) was evaluated. Flow cytometry and Western blotting were used to study the GFP expression knockdown, and significant knockdown was observed as a result of siRNA delivery to the cells by NISV. This occurred in particular when using Tween 85, which was able to achieve more than 70% GFP knockdown. NISV were thus demonstrated to provide a promising and effective platform for therapeutic delivery of siRNA.


Assuntos
Microfluídica/métodos , RNA Interferente Pequeno/administração & dosagem , Tensoativos/química , Células A549 , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interferência de RNA
14.
Int J Pharm ; 521(1-2): 54-60, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28163227

RESUMO

Non-ionic surfactant vesicles (NISV) are synthetic membrane vesicles formed by self-assembly of a non-ionic surfactant, often in a mixture with cholesterol and a charged chemical species. Different methods can be used to manufacture NISV, with the majority of these requiring bulk mixing of two phases. This mixing process is time-consuming and leads to the preparation of large and highly dispersed vesicles, which affects the consistency of the final product and could hinder subsequent regulatory approval. In this study, we have compared the physical characteristics of NISV prepared using two conventional methods (thin-film hydration method and heating method) with a recently introduced microfluidic method. The resulting particles from these methods were assessed for their physical characteristics and in vitro cytotoxicity. Through microfluidics, nano-sized NISV were prepared in seconds, through rapid and controlled mixing of two miscible phases (lipids dissolved in alcohol and an aqueous medium) in a microchannel, without the need of a size reduction step, as required for the conventional methods. Stability studies over two months showed the particles were stable regardless of the method of preparation and there were no differences in terms of EC50 on A375 and A2780 cell lines. However, this work demonstrates the flexibility and ease of applying lab-on-chip microfluidics for the preparation of NISV that could be used to significantly improve formulation research and development, by enabling the rapid manufacture of a consistent end-product, under controlled conditions.


Assuntos
Química Farmacêutica/métodos , Lipossomos/síntese química , Tensoativos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Lipossomos/farmacologia , Tensoativos/farmacologia
15.
Nanomedicine ; 11(6): 1445-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25933695

RESUMO

The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. FROM THE CLINICAL EDITOR: Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies.


Assuntos
Dendrímeros/administração & dosagem , Lactoferrina/administração & dosagem , Neoplasias/tratamento farmacológico , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Humanos
16.
Toxicol In Vitro ; 29(2): 271-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25433333

RESUMO

Hip resurfacing with cobalt-chromium (CoCr) alloy was developed as a surgical alternative to total hip replacement. However, the biological effects of nanoparticles generated by wear at the metal-on-metal articulating surfaces has limited the success of such implants. The aim of this study was to investigate the effects of the combined exposure to CoCr nanoparticles and cobalt ions released from a resurfacing implant on monocytes (U937 cells) and whether these resulted in morphology changes, proliferation alterations, toxicity and cytokine release. The interaction between prior exposure to Co ions and the cellular response to nanoparticulate debris was determined to simulate the situation in patients with metal-on-metal implants receiving a second implant. Effects on U937 cells were mainly seen after 120h of treatment. Prior exposure to Co ions increased the toxic effects induced by the debris, and by Co ions themselves, suggesting the potential for interaction in vivo. Increased TNF-α secretion by resting cells exposed to nanoparticles could contribute to osteolysis processes in vivo, while increased IFN-γ production by activated cells could represent cellular protection against tissue damage. Data suggest that interactions between Co ions and CoCr nanoparticles would occur in vivo, and could threaten the survival of a CoCr metal implant.


Assuntos
Ligas de Cromo/toxicidade , Cobalto/toxicidade , Nanopartículas Metálicas/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Prótese de Quadril , Humanos , Interferon gama/metabolismo , Interleucina-6/metabolismo , Monócitos , Fator de Necrose Tumoral alfa/metabolismo , Células U937
17.
Toxicol Appl Pharmacol ; 281(1): 125-35, 2014 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281833

RESUMO

Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p<0.05) amounts of Co and Cr ions into the culture medium, and significant (p<0.05) cellular uptake of both ions. There was also an increase (p<0.05) in apoptosis after a 48h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p<0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions+debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one.


Assuntos
Apoptose/fisiologia , Cromo/metabolismo , Cobalto/metabolismo , Próteses Articulares Metal-Metal/efeitos adversos , Monócitos/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cromo/toxicidade , Ligas de Cromo/metabolismo , Ligas de Cromo/toxicidade , Cobalto/toxicidade , Relação Dose-Resposta a Droga , Humanos , Monócitos/efeitos dos fármacos , Células U937
18.
Br J Pharmacol ; 168(6): 1497-505, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23113536

RESUMO

BACKGROUND AND PURPOSE: Sphingosine kinase catalyses the formation of sphingosine 1-phosphate and is linked with androgen receptor signalling in prostate cancer cells. Therefore, we investigated the effect of sphingosine kinase inhibitors on androgen receptor expression. EXPERIMENTAL APPROACH: Androgen-sensitive LNCaP cells were treated with SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole), which inhibits sphingosine kinases 1 and 2 activity, and the effect on androgen receptor expression was measured. KEY RESULTS: Treatment of cells with SK1 inhibitors reduced the expression of the androgen receptor and prostate-specific antigen, while (R)-FTY720 methyl ether (a sphingosine-kinase-2-selective inhibitor), at a concentration that eliminates sphingosine kinase 2 from cells, had no significant effect on androgen receptor expression. The effect of SKi on androgen receptor expression was independent of the SKi-induced proteasomal degradation of SK1 and was post translational, although androgen receptor mRNA transcript was reduced. Fumonisin B1 (a ceramide synthase inhibitor) also failed to reverse the effect of SKi on androgen receptor expression, thereby excluding a role for ceramide derived from the salvage pathway. The effect of SKi on androgen receptor expression was reversed by N-acetylcysteine, which was used to scavenge reactive oxygen species. CONCLUSION AND IMPLICATIONS: Inhibition of sphingosine kinase 1 activity abrogates androgen receptor signalling via an oxidative stress-induced, p53-independent mechanism in prostate cancer cells. Therefore, SK1 inhibitors may offer therapeutic potential in promoting the removal of AR receptors from prostate cancer cells, resulting in an increased efficacy, which is likely to be superior to inhibitors that simply reversibly inhibit AR signalling.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Tiazóis/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Cloridrato de Fingolimode , Sequestradores de Radicais Livres/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Propilenoglicóis/farmacologia , Antígeno Prostático Específico/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Tiazóis/antagonistas & inibidores
19.
Biomaterials ; 33(9): 2701-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22200536

RESUMO

The potential of gene therapy to treat cancer is hampered by the lack of safe and efficacious gene delivery systems able to selectively deliver therapeutic genes to tumors by intravenous administration. With the long-term aim of developing an efficacious cancer-targeted gene medicine, we demonstrated that transferrin-bearing polypropylenimine dendrimer complexed to a plasmid DNA encoding p73 led to an enhanced anti-proliferative activity in vitro, by up to 120-fold in A431 compared to the unmodified dendriplex. In vivo, the intravenous administration of this p73-encoding dendriplex resulted in a rapid and sustained inhibition of tumor growth over one month, with complete tumor suppression for 10% of A431 and B16-F10 tumors and long-term survival of the animals. The treatment was well tolerated by the animals, with no apparent signs of toxicity. These results suggest that the p73-encoding tumor-targeted polypropylenimine dendrimer should be further explored as a therapeutic strategy for cancer therapy.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética/métodos , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/uso terapêutico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/uso terapêutico , Aminobutiratos/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , DNA/metabolismo , Dendrímeros/administração & dosagem , Dendrímeros/química , Diagnóstico por Imagem , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Humanos , Injeções Intravenosas , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Indução de Remissão , Transfecção , Transferrina/metabolismo , Proteína Tumoral p73 , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomaterials ; 32(25): 5889-99, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21596431

RESUMO

The possibility of using non-viral gene delivery systems for the treatment of cancer is currently limited by their lower transfection efficacy compared to viral systems. On the basis that amino acids such as arginine, lysine and leucine were involved in enhancing DNA transportation into cells, we hypothesized that the grafting of these amino acids to the highly promising generation 3 diaminobutyric polypropylenimine (DAB) dendrimer would improve its transfection efficacy in cancer cells. In this work we demonstrated that the conjugation of arginine, lysine and leucine to the dendrimer led to an enhanced anti-proliferative activity of the polyplexes, by up to 47-fold for DAB-Lys in T98G cancer cells compared to the unmodified polyplex in vitro. In vivo, the intravenous administration of amino acid-bearing DAB polyplexes resulted in a significantly improved tumor gene expression, with the highest gene expression level observed after treatment with DAB-Lys polyplex. Arginine, lysine and leucine-bearing generation 3 polypropylenimine polymers are therefore highly promising gene delivery systems for gene transfection in tumors.


Assuntos
Arginina/administração & dosagem , Expressão Gênica , Leucina/administração & dosagem , Lisina/administração & dosagem , Neoplasias/patologia , Polipropilenos/química , Animais , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA