RESUMO
Acinar cell carcinoma (ACC) of the pancreas is a malignant tumor of the exocrine cell lineage with a poor prognosis. Due to its rare incidence and technical difficulties, few authentic human cell lines are currently available, hampering detailed investigations of ACC. Therefore, we applied the organoid culture technique to various types of specimens, such as bile, biopsy, and resected tumor, obtained from a single ACC patient. Despite the initial propagation, none of these organoids achieved long-term proliferation or tolerated cryopreservation, confirming the challenging nature of establishing ACC cell lines. Nevertheless, the biopsy-derived early passage organoid developed subcutaneous tumors in immunodeficient mice. The xenograft tumor histologically resembled the original tumor and gave rise to infinitely propagating organoids with solid features and high levels of trypsin secretion. Moreover, the organoid stained positive for carboxylic ester hydrolase, a specific ACC marker, but negative for the duct cell marker CD133 and the endocrine lineage marker synaptophysin. Hence, we concluded the derivation of a novel ACC cell line of the pure exocrine lineage, designated HS-1. Genomic analysis revealed extensive copy number alterations and mutations in EP400 in the original tumor, which were enriched in primary organoids. HS-1 displayed homozygous deletion of CDKN2A, which might underlie xenograft formation from organoids. Although resistant to standard cytotoxic agents, the cell line was highly sensitive to the proteasome inhibitor bortezomib, as revealed by an in vitro drug screen and in vivo validation. In summary, we document a novel ACC cell line, which could be useful for ACC studies in the future.
Assuntos
Carcinoma de Células Acinares , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Homozigoto , Deleção de Sequência , Neoplasias Pancreáticas/patologia , Organoides/metabolismo , Linhagem Celular , Neoplasias PancreáticasRESUMO
Transcriptomic analysis of cancer samples helps identify the mechanism and molecular markers of cancer. However, transcriptomic analyses of pancreatic cancer from the Japanese population are lacking. Hence, in this study, we performed RNA sequencing of fresh and frozen pancreatic cancer tissues from 12 Japanese patients to identify genes critical for the clinical pathology of pancreatic cancer among the Japanese population. Additionally, we performed immunostaining of 107 pancreatic cancer samples to verify the results of RNA sequencing. Bioinformatics analysis of RNA sequencing data identified ITGB1 (Integrin beta 1) as an important gene for pancreatic cancer metastasis, progression, and prognosis. ITGB1 expression was verified using immunostaining. The results of RNA sequencing and immunostaining showed a significant correlation (r = 0.552, p = 0.118) in ITGB1 expression. Moreover, the ITGB1 high-expression group was associated with a significantly worse prognosis (p = 0.035) and recurrence rate (p = 0.028). We believe that ITGB1 may be used as a drug target for pancreatic cancer in the future.
Assuntos
Neoplasias Pancreáticas , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Neoplasias PancreáticasRESUMO
Radiogenomics has attracted attention for predicting the molecular biological characteristics of tumors from clinical images, which are originally a collection of numerical values, such as computed tomography (CT) scans. A prediction model using genetic information is constructed using thousands of image features extracted and calculated from these numerical values. In the present study, RNA sequencing of pancreatic ductal adenocarcinoma (PDAC) tissues from 12 patients was performed to identify genes useful in evaluating clinical pathology, and 107 PDAC samples were immunostained to verify the obtained findings. In addition, radiogenomics analysis of gene expression was performed by machine learning using CT images and constructed prediction models. Bioinformatics analysis of RNA sequencing data identified integrin αV (ITGAV) as being important for clinicopathological factors, such as metastasis and prognosis, and the results of sequencing and immunostaining demonstrated a significant correlation (r=0.625, P=0.039). Notably, the ITGAV highexpression group was associated with a significantly worse prognosis (P=0.005) and recurrence rate (P=0.003) compared with the lowexpression group. The ITGAV prediction model showed some detectability (AUC=0.697), and the predicted ITGAV highexpression group was also associated with a worse prognosis (P=0.048). In conclusion, radiogenomics predicted the expression of ITGAV in pancreatic cancer, as well as the prognosis.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Perfilação da Expressão Gênica , Humanos , Integrina alfaV/genética , Integrina alfaV/metabolismo , Aprendizado de Máquina , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Neoplasias PancreáticasRESUMO
Tumor mutational burden (TMB) is gaining attention as a biomarker for responses to immune checkpoint inhibitors in cancer patients. In this study, we evaluated the status of TMB in primary and liver metastatic lesions in patients with colorectal cancer (CRC). In addition, the status of TMB in primary and liver metastatic lesions was inferred by radiogenomics on the basis of computed tomography (CT) images. The study population included 24 CRC patients with liver metastases. DNA was extracted from primary and liver metastatic lesions obtained from the patients and TMB values were evaluated by next-generation sequencing. The TMB value was considered high when it equaled to or exceeded 10/100 Mb. Radiogenomic analysis of TMB was performed by machine learning using CT images and the construction of prediction models. In 7 out of 24 patients (29.2%), the TMB status differed between the primary and liver metastatic lesions. Radiogenomic analysis was performed to predict whether TMB status was high or low. The maximum values for the area under the receiver operating characteristic curve were 0.732 and 0.812 for primary CRC and CRC with liver metastasis, respectively. The sensitivity, specificity, and accuracy of the constructed models for TMB status discordance were 0.857, 0.600, and 0.682, respectively. Our results suggested that accurate inference of the TMB status is possible using radiogenomics. Therefore, radiogenomics could facilitate the diagnosis, treatment, and prognosis of patients with CRC in the clinical setting.
Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Genômica/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Neoplasias Colorretais/genética , Diagnóstico Tardio , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/genética , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Sensibilidade e Especificidade , Análise de Sequência de DNA , Tomógrafos ComputadorizadosRESUMO
Genetically engineered mice have been the gold standard in modeling tumor development. Recent studies have demonstrated that genetically engineered organoids can develop subcutaneous tumors in immunocompromised mice, at least for organs that prefer predominant driver mutations for tumorigenesis. To further substantiate this concept, the fallopian tube (FT), a major cell of origin of ovarian high-grade serous carcinoma (HGSC), which almost invariably carries TP53 mutations, was investigated for p53 inactivation-driven tumorigenesis. Murine FT organoids subjected to lentiviral Cre-mediated Trp53 deletion did not develop tumors. However, subsequent suppression of Pten and simultaneous induction of mutant Pik3ca led to the development of carcinoma in situ and HGSC-like tumors, respectively, whereas concurrent deletion of Apc resulted in the development of benign cysts, mirroring frequent activation of the PI3K/AKT axis and the marginal impact of Wnt pathway activation in HGSC. Consistent with the frequent activation of the RAS pathway in HGSC, mutant Kras cooperated with Trp53 deletion for the development of tumors, which unexpectedly contained sarcoma cells in addition to carcinoma cells, despite the epithelial origin of the inoculated organoids. This finding is in sharp contrast with the exclusive adenocarcinoma development from gastrointestinal organoids with the same genotype reported in previous studies, suggesting a tissue-specific epithelial-mesenchymal transition program. In tumor-derived organoids, the Cre-mediated recombination rate reached 100% for Trp53 but not for the other genes, highlighting the advantage of p53 inactivation in FT tumorigenesis. The Trp53 wildtype FT organoids expressing the mutant Kras developed sarcoma and carcinoma upon Cdkn2a suppression and Tgfbr2 deletion, respectively, revealing novel pro-tumorigenic genetic cooperation and critical roles of TGF-ß signaling for epithelial-mesenchymal transition in FT-derived tumorigenesis. Collectively, the organoid-based approach represents a shortcut to tumorigenesis and provides novel insights into the relationships among genotype, cell type, and tumor phenotype underlying tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Carcinogênese/patologia , Tubas Uterinas/patologia , Neoplasias Experimentais/patologia , Organoides/patologia , Lesões Pré-Cancerosas/patologia , Animais , Carcinogênese/genética , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Camundongos , Neoplasias Experimentais/genética , Lesões Pré-Cancerosas/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
KRAS, an oncogene, is frequently activated by mutations in many cancers. Kras-driven adenocarcinoma development in the lung, pancreas, and biliary tract has been extensively studied using gene targeting in mice. By taking the organoid- and allograft-based genetic approach to these organs, essentially the same results as in vivo models were obtained in terms of tumor development. To verify the applicability of this approach to other organs, we investigated whether the combination of Kras activation and Pten inactivation, which gives rise to endometrial tumors in mice, could transform murine endometrial organoids in the subcutis of immunodeficient mice. We found that in KrasG12D-expressing endometrial organoids, Pten knockdown did not confer tumorigenicity, but Cdkn2a knockdown or Trp53 deletion led to the development of carcinosarcoma (CS), a rare, aggressive tumor comprising both carcinoma and sarcoma. Although they originated from epithelial cells, some CS cells expressed both epithelial and mesenchymal markers. Upon inoculation in immunodeficient mice, tumor-derived round organoids developed carcinoma or CS, whereas spindle-shaped organoids formed monophasic sarcoma only, suggesting an irreversible epithelial-mesenchymal transition during the transformation of endometrial cells and progression. As commonly observed in mutant Kras-driven tumors, the deletion of the wild-type Kras allele was identified in most induced tumors, whereas some epithelial cells in CS-derived organoids were unexpectedly negative for KrasG12D. Collectively, we showed that the oncogenic potential of KrasG12D and the histological features of derived tumors are context-dependent and varies according to the organ type and experimental settings. Our findings provide novel insights into the mechanisms underlying tissue-specific Kras-driven tumorigenesis.
RESUMO
Pathogenic mitochondrial NADH dehydrogenase (ND) gene mutations enhance the invasion and metastasis of various cancer cells, and they are associated with metastasis in human non-small cell lung cancer (NSCLC). Moreover, monocarboxylate transporter 4 (MCT4) is overexpressed in solid cancers and plays a role in cancer cell proliferation and survival. Here, we report that MCT4 is exclusively expressed in mouse transmitochondrial cybrids with metastasis-enhancing pathogenic ND6 mutations. A high level of MCT4 is also detected in human NSCLC cell lines and tissues predicted to carry pathogenic ND mutations and is associated with poor prognosis in NSCLC patients. MCT4 expression in the cell lines is suppressed by N-acetyl-L-cysteine. Phosphatidylinositol-3 kinase (PI3K), AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) are involved in the regulation of MCT4 expression in the transmitochondrial cybrid cells. An MCT1/4 inhibitor effectively kills NSCLC cells with predicted pathogenic ND mutations, but an MCT1/2 inhibitor does not have the same effect. Thus, MCT4 expression is augmented by pathogenic ND mutations and could be a biomarker and a therapeutic target in pathogenic ND mutation-harbouring metastatic tumours.
Assuntos
Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Mutação/genética , NADH Desidrogenase/genética , Células A549 , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Osteosarcoma (OS) is the most common malignant bone tumor, and its sensitivity to preoperative chemotherapy is a significant prognostic factor. The present study aimed to identify potential genomic markers for the prediction of chemosensitivity in patients with OS using a genomic approach. A total of 50 pediatric and adolescent patients diagnosed with highgrade OS were selected. Each pretherapeutic biopsy sample was subjected to comparative genomic hybridization array analysis and targeted exome sequencing. Although no recurrent gene mutation was observed in chemoresistant tumors, copy number analysis detected recurrent gain of chromosome 12q14.1, which was significantly more frequent (5/21; 24%) in the poor responder cohort than in the good responder cohort (0/29; 0%; P<0.01). Subsequent expression analysis revealed that CDK4 was the only gene in the 12q14.1 gained region with an expression level that was positively associated with copy number gains. In order to elucidate the effect of CDK4 on drug sensitivity, CDK4overexpressing OS cell lines were treated with cisplatin (CDDP); significant attenuation of CDDP sensitivity, demonstrated by increased cell viability and decreased expression of cleaved caspase9, was induced by enforced expression of CDK4. In addition, treatment with CDK4/6 inhibitor palbociclib in CDK4overexpressing U2OS cells facilitated apoptosis and a significant decrease in cell viability in a dosedependent manner. In conclusion, the results of the present study showed that higher expression and amplification of CDK4 in tumors is a predictive biomarker for resistance to conventional chemotherapy in patients with OS and that palbociclib is a promising drug for this therapeutically challenging cohort.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Quinase 4 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos , Osteossarcoma/genética , Piperazinas/farmacologia , Piridinas/farmacologia , Regulação para Cima , Adolescente , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Criança , Pré-Escolar , Cisplatino/farmacologia , Hibridização Genômica Comparativa , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Osteossarcoma/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Sequenciamento do ExomaRESUMO
BACKGROUND: The multi-functional BMCC1 (BCH motif-containing molecule at the carboxyl terminal region 1)/PRUNE2 plays a clear role in suppression of tumor activity. In the patients with neuroblastoma (NB), reduced expression of BMCC1 in primary tumor tissues was associated with poor prognosis. By contrast, enforced expression of BMCC1 as well as elevated expression of BMCC1 in response to DNA-damage promotes apoptosis by abrogating Akt-mediated survival pathways. METHODS: We addressed molecular mechanisms underlying changes in regulation of BMCC1 expression during the process of apoptosis, which was promoted by a DNA-damaging drug Cisplatin (CDDP), in NB-derived cells. RESULTS: Elevated expression of BMCC1 was identified as an early response to DNA damage, which is accompanied by phosphorylation of ataxia telangiectasia mutated kinase (ATM) and accumulation of E2F1. Indeed, inhibition of ATM using an ATM inhibitor resulted in a decrease in expression of BMCC1 at mRNA levels. In addition, an E2F-binding sight was required for activation of BMCC1 promoter in response to DNA damage. On the other hand, knockdown of E2F1 yielded abrogated induction of BMCC1 in the cells after treatment with CDDP, suggesting that BMCC1 accumulation was caused by ATM-E2F1-dependent transcription. Finally, we demonstrated that full-length BMCC1 was proteolytically cleaved by apoptosis-activated caspase-9 during advanced stages of apoptosis in SK-N-AS cells. CONCLUSIONS: In this study, we demonstrated the programmed expression of full-length BMCC1 in human NB cells undergoing DNA damage-induced apoptosis. The elucidation of the molecular mechanisms controlling the regulation of BMCC1 during apoptosis initiated by DNA damage provides useful information for understanding drug resistance of tumor cells and spontaneous regression of NB.
Assuntos
Apoptose , Dano ao DNA/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neuroblastoma/patologia , Fosforilação , Regiões Promotoras GenéticasRESUMO
BCH motif-containing molecule at the carboxyl terminal region 1 (BMCC1)/PRUNE2 is highly expressed in patients with favorable neuroblastoma (NB), encoding a multifunctional scaffold protein that modulates several signaling networks including RhoA and AKT pathways. Accumulating evidence suggests that BMCC1 acts as a tumor-suppressor. In this study, we addressed molecular mechanism underlying transcriptional regulation of BMCC1 in NBs. We found that transcription factor E2F1 was recruited to E2F-binding site in the promoter region of BMCC1 gene. Indeed, overexpression of E2F1 resulted in an increase in the expression level of BMCC1 in NB cell lines. On the other hand, knockdown of E2F1 in NB cells yielded down-regulation of BMCC1. Also, we showed that BMCC1 and E2F1 were simultaneously induced at G1 to S phase transition. Therefore, we conclude that E2F1 directly facilitated BMCC1 transcription. Taking together, these results suggest that BMCC1 induced by E2F1 acts as a tumor suppressor through its pro-apoptotic function, resulted in favorable prognosis of NB.
Assuntos
Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Ciclo Celular , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Prognóstico , Regiões Promotoras Genéticas , Ativação TranscricionalRESUMO
Our neuroblastoma cDNA project previously identified Src homology 2 domain containing F (Shf) as one of the genes expressed at high levels in favorable neuroblastoma. Shf is an adaptor protein containing four putative tyrosine phosphorylation sites and an SH2 domain. In this study, we found that Shf interacted with anaplastic lymphoma kinase (ALK), an oncogenic receptor tyrosine kinase in neuroblastoma. Real-time PCR analysis showed that Shf mRNA is highly expressed in non-metastatic neuroblastomas compared to metastatic tumor samples (P < 0.030, n = 106). Interestingly, patients showing high ALK and low Shf mRNA expressions showed poor prognosis, whereas low ALK and high Shf expressions were related to better prognosis (P < 0.023, n = 38). Overexpression of ALK and siRNA-mediated knockdown of Shf yielded similar results, such as an increase in cellular growth and phosphorylation of ALK, in addition to Erk1/2 and signal transducer and activator of transcription 3 (STAT3) that are downstream signals of the ALK-initiated phospho-transduction pathway. Knockdown of Shf also increased the cellular mobility and invasive capability of neuroblastoma cells. These results suggest that Shf interacts with ALK and negatively regulates the ALK-initiated signal transduction pathway in neuroblastoma. We thus propose that Shf inhibits phospho-transduction signals mediated by ALK, which is one of the major key players on neuroblastoma development, resulting in better prognosis of the tumor.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuroblastoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Invasividade Neoplásica , Neuroblastoma/genética , Neuroblastoma/patologia , Fosforilação , Prognóstico , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
When human cells enter S-phase, overlapping differential inhibitory mechanisms downregulate the replication licensing factors ORC1, CDC6 and Cdt1. Such regulation prevents re-replication so that deregulation of any individual factor alone would not be expected to induce overt re-replication. However, this has been challenged by the fact that overexpression of Cdt1 or Cdt1+CDC6 causes re-replication in some cancer cell lines. We thought it important to analyze licensing regulations in human non-cancerous cells that are resistant to Cdt1-induced re-replication and examined whether simultaneous deregulation of these licensing factors induces re-replication in two such cell lines, including human fibroblasts immortalized by telomerase. Individual overexpression of either Cdt1, ORC1 or CDC6 induced no detectable re-replication. However, with Cdt1+ORC1 or Cdt1+CDC6, some re-replication was detectable and coexpression of Cdt1+ORC1+CDC6 synergistically acted to give strong re-replication with increased mini-chromosome maintenance (MCM) loading. Coexpression of ORC1+CDC6 was without effect. These results suggest that, although Cdt1 regulation is the key step, differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. Our findings also show for the first time the importance of ORC1 regulation for prevention of re-replication.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimologia , Quinases Ciclina-Dependentes/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem/genética , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , TransfecçãoRESUMO
The activity of human Cdt1 is negatively regulated by multiple mechanisms. This suggests that Cdt1 deregulation may have a deleterious effect. Indeed, it has been suggested that overexpression of Cdt1 can induce rereplication in cancer cells and that rereplication activates Ataxia-telangiectasia-mutated (ATM) kinase and/or ATM- and Rad3-related (ATR) kinase-dependent checkpoint pathways. In this report, we highlight a new and interesting aspect of Cdt1 deregulation: data from several different systems all strongly indicate that unregulated Cdt1 overexpression at pathophysiological levels can induce chromosomal damage other than rereplication in non-transformed cells. The most important finding in these studies is that deregulated Cdt1 induces chromosomal damage and activation of the ATM-Chk2 DNA damage checkpoint pathway even in quiescent cells. These Cdt1 activities are negatively regulated by cyclin A/Cdks, probably through modification by phosphorylation. Furthermore, we found that deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this would be a new molecular mechanism leading to carcinogenesis.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , Cromossomos , Replicação do DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2 , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Cariotipagem , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Proteínas Supressoras de Tumor/metabolismoRESUMO
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.