Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35368077

RESUMO

Survival analysis is a technique for identifying prognostic biomarkers and genetic vulnerabilities in cancer studies. Large-scale consortium-based projects have profiled >11 000 adult and >4000 pediatric tumor cases with clinical outcomes and multiomics approaches. This provides a resource for investigating molecular-level cancer etiologies using clinical correlations. Although cancers often arise from multiple genetic vulnerabilities and have deregulated gene sets (GSs), existing survival analysis protocols can report only on individual genes. Additionally, there is no systematic method to connect clinical outcomes with experimental (cell line) data. To address these gaps, we developed cSurvival (https://tau.cmmt.ubc.ca/cSurvival). cSurvival provides a user-adjustable analytical pipeline with a curated, integrated database and offers three main advances: (i) joint analysis with two genomic predictors to identify interacting biomarkers, including new algorithms to identify optimal cutoffs for two continuous predictors; (ii) survival analysis not only at the gene, but also the GS level; and (iii) integration of clinical and experimental cell line studies to generate synergistic biological insights. To demonstrate these advances, we report three case studies. We confirmed findings of autophagy-dependent survival in colorectal cancers and of synergistic negative effects between high expression of SLC7A11 and SLC2A1 on outcomes in several cancers. We further used cSurvival to identify high expression of the Nrf2-antioxidant response element pathway as a main indicator for lung cancer prognosis and for cellular resistance to oxidative stress-inducing drugs. Altogether, these analyses demonstrate cSurvival's ability to support biomarker prognosis and interaction analysis via gene- and GS-level approaches and to integrate clinical and experimental biomedical studies.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Análise de Sobrevida
2.
Nucleic Acids Res ; 49(W1): W207-W215, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019643

RESUMO

Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes.


Assuntos
Visualização de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Internet , Transcriptoma/genética , Animais , COVID-19/genética , COVID-19/virologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Imunidade Inata , Nasofaringe/virologia , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Especificidade da Espécie , Fluxo de Trabalho
3.
PLoS Genet ; 15(12): e1008508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815936

RESUMO

Zinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role for mammalian MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to cadmium and excess zinc. Using gain- and loss-of-function mutants and qRT-PCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut and are hypersensitive to zinc-induced reductions in egg-laying. Furthermore, mdt-15 but not hizr-1 mutants are hypersensitive to cadmium-induced reductions in egg-laying, suggesting potential divergence of regulatory pathways. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a cadmium and zinc-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate cadmium detoxification and zinc storage and that this mechanism is at least partially conserved in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Zinco/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/genética , Humanos , Metalotioneína/genética , Mutação , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Acta Neuropathol Commun ; 6(1): 54, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29961428

RESUMO

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


Assuntos
Encéfalo/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Técnicas de Cultura de Órgãos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Escleroproteínas/toxicidade , alfa-Sinucleína/genética
5.
Cytogenet Genome Res ; 152(3): 117-121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854430

RESUMO

A 41-year-old Asian woman with bilateral renal angiomyolipomas (AML) was incidentally identified to have a balanced translocation, 46,XX,t(11;12)(p15.4;q15). She had no other features or family history to suggest a diagnosis of tuberous sclerosis. Her healthy daughter had the same translocation and no renal AML at the age of 3 years. Whole-genome sequencing was performed on genomic maternal DNA isolated from blood. A targeted de novo assembly was then conducted with ABySS for chromosomes 11 and 12. Sanger sequencing was used to validate the translocation breakpoints. As a result, genomic characterization of chromosomes 11 and 12 revealed that the 11p breakpoint disrupted the NUP98 gene in intron 1, causing a separation of the promoter and transcription start site from the rest of the gene. The translocation breakpoint on chromosome 12q was located in a gene desert. NUP98 has not yet been associated with renal AML pathogenesis, but somatic NUP98 alterations are recurrently implicated in hematological malignancies, most often following a gene fusion event. We also found evidence for complex structural events involving chromosome 12, which appear to disrupt the TDG gene. We identified a TDGP1 partially processed pseudogene at 12p12.1, which adds complexity to the de novo assembly. In conclusion, this is the first report of a germline constitutional structural chromosome rearrangement disrupting NUP98 that occurred in a generally healthy woman with bilateral renal AML.


Assuntos
Angiomiolipoma/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 12/genética , Neoplasias Renais/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética , Adulto , Amniocentese , Análise Citogenética/métodos , Feminino , Proteínas Ligadas por GPI/genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Pseudogenes , Sítio de Iniciação de Transcrição , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética
6.
Genetics ; 202(2): 583-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715664

RESUMO

Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Receptores ErbB/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Animais , Quinases Ciclina-Dependentes/química , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transcrição Gênica
7.
Cell Metab ; 22(4): 633-45, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26321661

RESUMO

s-adenosylmethionine (SAM) is the sole methyl donor modifying histones, nucleic acids, and phospholipids. Its fluctuation affects hepatic phosphatidylcholine (PC) synthesis or may be linked to variations in DNA or histone methylation. Physiologically, low SAM is associated with lipid accumulation, tissue injury, and immune responses in fatty liver disease. However, molecular connections among SAM limitation, methyltransferases, and disease-associated phenotypes are unclear. We find that low SAM can activate or attenuate Caenorhabditis elegans immune responses. Immune pathways are stimulated downstream of PC production on a non-pathogenic diet. In contrast, distinct SAM-dependent mechanisms limit survival on pathogenic Pseudomonas aeruginosa. C. elegans undertakes a broad transcriptional response to pathogens and we find that low SAM restricts H3K4me3 at Pseudomonas-responsive promoters, limiting their expression. Furthermore, this response depends on the H3K4 methyltransferase set-16/MLL. Thus, our studies provide molecular links between SAM and innate immune functions and suggest that SAM depletion may limit stress-induced gene expression.


Assuntos
Imunidade Inata , S-Adenosilmetionina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilcolinas/metabolismo , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Nucleic Acids Res ; 43(4): 2442-53, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25634893

RESUMO

The Mediator multiprotein complex ('Mediator') is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/ß-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Complexo Mediador/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Complexo Mediador/genética , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 111(22): E2271-80, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843123

RESUMO

The Mediator is a conserved transcriptional coregulator complex required for eukaryotic gene expression. In Caenorhabditis elegans, the Mediator subunit mdt-15 is essential for the expression of genes involved in fatty acid metabolism and ingestion-associated stress responses. mdt-15 loss of function causes defects in reproduction and mobility and shortens lifespan. In the present study, we find that worms with mutated or depleted mdt-15 (mdt-15 worms) exhibit decreased membrane phospholipid desaturation, especially in phosphatidylcholine. Accordingly, mdt-15 worms exhibit disturbed endoplasmic reticulum (ER) homeostasis, as indicated by a constitutively activated ER unfolded protein response (UPR(ER)). Activation of this stress response is only partially the consequence of reduced membrane lipid desaturation, implicating other mdt-15-regulated processes in maintaining ER homeostasis. Interestingly, mdt-15 inactivation or depletion of the lipid metabolism enzymes stearoyl-CoA-desaturases (SCD) and S-adenosyl methionine synthetase (sams-1) activates the UPR(ER) without promoting misfolded protein aggregates. Moreover, these worms exhibit wild-type sensitivity to chemically induced protein misfolding, and they do not display synthetic lethality with mutations in UPR(ER) genes, which cause protein misfolding. Therefore, the constitutively activated UPR(ER) in mdt-15, SCD, and sams-1 worms is not the consequence of proteotoxic stress but likely is the direct result of changes in ER membrane fluidity and composition. Together, our data suggest that the UPR(ER) is induced directly upon membrane disequilibrium and thus monitors altered ER homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Deficiências na Proteostase/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Acil Coenzima A/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cardiolipinas/metabolismo , Ácidos Graxos/metabolismo , Homeostase/fisiologia , Lipídeos/biossíntese , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fatores de Transcrição/genética
10.
Cell Transplant ; 21(12): 2555-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22862886

RESUMO

Magnetic resonance (MR) imaging of superparamagnetic iron oxide (SPIO)-labeled stem cells offers a noninvasive evaluation of stem cell engraftment in host organs. Excessive cellular iron load from SPIO labeling, however, impairs stem cell differentiation. The purpose of this study was to magnetically label human embryonic stem cells (hESCs) via a reduced exposure protocol that maintains a significant MR signal and no significant impairment to cellular pluripotency or differentiation potential. hESCs were labeled by simple incubation with Food and Drug Administration-approved ferumoxides, using concentrations of 50- 200 µg Fe/ml and incubation times of 3-24 h. The most reduced exposure labeling protocol that still provided a significant MR signal comparable to accepted labeling protocols was selected for subsequent studies. Labeled hESCs were compared to unlabeled controls for differences in pluripotency as studied by fluorescence staining for SSEA-1, SSEA-4, TRA-60, and TRA-81 and in differentiation capacity as studied by quantitative real-time PCR for hOCT4, hACTC1, hSOX1, and hAFP after differentiation into embryoid bodies (EBs). Subsequent MR and microscopy imaging were performed to evaluate for cellular iron distribution and long-term persistence of the label. An incubation concentration of 50 µg Fe/ml and incubation time of 3 h demonstrated a significantly reduced exposure protocol that yielded an intracellular iron uptake of 4.50 ± 0.27 pg, an iron content comparable to currently accepted SPIO labeling protocols. Labeled and unlabeled hESCs showed no difference in pluripotency or differentiation capacity. Ferumoxide-labeled hESCs demonstrated persistent MR contrast effects as embryoid bodies for 21 days. Electron microscopy confirmed persistent lysosomal storage of iron oxide particles in EBs up to 9 days, while additional microscopy visualization confirmed the iron distribution within single and multiple EBs. Labeling hESCs with ferumoxides by this tailored protocol reduces exposure of cells to the labeling agent while allowing for long-term visualization with MR imaging and the retention of cellular pluripotency and differentiation potential.


Assuntos
Células-Tronco Embrionárias/citologia , Magnetismo , Diferenciação Celular , Linhagem Celular , Meios de Contraste/química , Meios de Contraste/metabolismo , Dextranos/química , Células-Tronco Embrionárias/metabolismo , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Microscopia Eletrônica de Transmissão
11.
Phys Chem Chem Phys ; 12(26): 7018-25, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20464023

RESUMO

Nuclear magnetic resonance (NMR) of paramagnetic molecules (pNMR) provides detailed information on the structure and bonding of metallo-organic systems. The physical mechanisms underlying chemical shifts are considerably more complicated in the presence of unpaired electrons than in the case of diamagnetic compounds. We report for the first time a combined first-principles theoretical as well as experimental liquid-state (11)B NMR study of a paramagnetic compound, applied on the [3-Fe(III)-(1,2-C(2)B(9)H(11))(2)](-) metallaborane, which is an electronically open-shell structure where the iron centre binds two hemispherical boron-carbon cages. We show that this combined theoretical and experimental analysis constitutes a firm basis for the assignment of experimental (11)B NMR chemical shifts in paramagnetic metallaboranes. In the calculations, the roles of the different physical contributions to the pNMR chemical shift are elaborated, and the performance of different popular exchange-correlation functionals of density-functional theory as well as basis sets, are evaluated. A dynamic correction to the calculated shifts via first-principles molecular dynamics simulations is found to be important. Solvent effects on the chemical shifts were computed and found to be of minor significance.

12.
Mol Cell Biol ; 24(10): 4546-56, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121871

RESUMO

E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fator de Transcrição E2F4 , Fase G1 , Regulação da Expressão Gênica , Histona Acetiltransferases , Humanos , Cinética , Lisina Acetiltransferase 5 , Mutação , Ligação Proteica , Fase S , Fatores de Transcrição/genética , Ativação Transcricional
13.
EMBO Rep ; 4(6): 575-80, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12776177

RESUMO

The transcription factor MYC binds specific DNA sites in cellular chromatin and induces the acetylation of histones H3 and H4. However, the histone acetyltransferases (HATs) that are responsible for these modifications have not yet been identified. MYC associates with TRRAP, a subunit of distinct macromolecular complexes that contain the HATs GCN5/PCAF or TIP60. Although the association of MYC with GCN5 has been shown, its interaction with TIP60 has never been analysed. Here, we show that MYC associates with TIP60 and recruits it to chromatin in vivo with four other components of the TIP60 complex: TRRAP, p400, TIP48 and TIP49. Overexpression of enzymatically inactive TIP60 delays the MYC-induced acetylation of histone H4, and also reduces the level of MYC binding to chromatin. Thus, the TIP60 HAT complex is recruited to MYC-target genes and, probably with other other HATs, contributes to histone acetylation in response to mitogenic signals.


Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Adenoviridae/genética , Animais , Linhagem Celular , DNA/metabolismo , Vetores Genéticos , Histona Acetiltransferases , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5 , Testes de Precipitina , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA