Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150608, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39270556

RESUMO

The transcription and transportation of mRNA are coupled processes; however, the mechanisms linking these processes remain unclear. Additionally, the significance of this connection in cancer drug development is poorly understood. To address these issues, we investigated the role of CDK12 kinase, which regulates RNA transcription through the phosphorylation of RNA polymerase II (Pol II) and has a repeated serine-arginine dipeptide (RS domain) involved in mRNA transport. Despite the anticipated uniqueness of CDK12 function, the mechanism by which CDK12 bridges and manages mRNA transcription and transport has not been fully analyzed. Our study revealed that CDK12 interacts with NXF1, a key molecule involved in the export of mRNA from the nucleus to the cytosol. Although CDK12 does not phosphorylate NXF1, we found that NXF1 unexpectedly stabilized the CDK12 protein, suggesting that NXF1 mRNA export activity indirectly affects mRNA transcriptional activity by modifying the protein level of CDK12. Furthermore, CDK12 recruited other essential RNA transporters, specifically the exon junction complex (EJC) and THO complexes, into the CDK12-NXF1 axis through its kinase activity. These observations provide insights into the mechanisms linking mRNA transcription and transport through the formation of a novel CDK12-NXF1 complex that involves EJC and THO. Importantly, the expression level of NXF1 influences sensitivity to CDK12 inhibitors, which are emerging as novel anti-cancer drug candidates. This highlights the importance of considering the relationship between mRNA transcription and transport when targeting RNA transcription in cancer therapy.

2.
J Radiat Res ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007844

RESUMO

The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.

3.
J Radiat Res ; 64(6): 948-953, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37839163

RESUMO

Radiation can induce DNA double-stranded breaks, which are typically detected by the fluorescence of phosphorylated histone H2AX. In this study, we examined the usefulness of the dynamics of radiation-induced gamma-H2AX foci of peripheral blood lymphocytes (PBLs), as a marker of DNA repair ability, in predicting late adverse events from radiotherapy. A total of 46 patients with cervical, vaginal and anal canal cancers treated with radical radiotherapy between 2014 and 2019 were included in this analysis. Concurrent chemotherapy was administered in 36 cases (78.3%). Peripheral blood was obtained before treatment, and then irradiated ex vivo with 1 Gy X-ray. The ratio of radiation-induced gamma-H2AX foci in PBLs measured at 30 min and at 4 h was defined as the foci decay ratio (FDR). With a median follow-up of 54 months, 9 patients (19.6%) were observed to have late genitourinary or gastrointestinal (GU/GI) toxicity. The FDR ranged from 0.51 to 0.74 (median 0.59), with a significantly higher incidence of Grade 1 or higher late adverse events in the FDR ≥ 0.59 group. In multivariate analysis, FDR ≥ 0.59 and hypertension also emerged as significant factors associated with the development of late toxicities. Overall, our results suggest that measurement of radiation-induced gamma-H2AX foci in PBLs may predict the risk of late GU/GI toxicities from chemoradiotherapy, which can enable tailoring the radiation dose to minimize adverse effects.


Assuntos
Histonas , Neoplasias Pélvicas , Feminino , Humanos , Histonas/metabolismo , Reparo do DNA , Linfócitos/metabolismo , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta à Radiação
4.
Sci Rep ; 11(1): 19661, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608183

RESUMO

Genetic information is protected against a variety of genotoxins including ionizing radiation (IR) through the DNA double-strand break (DSB) repair machinery. Genome-wide association studies and clinical sequencing of cancer patients have suggested that a number of variants in the DNA DSB repair genes might underlie individual differences in chromosomal radiosensitivity within human populations. However, the number of established variants that directly affect radiosensitivity is still limited. In this study, we performed whole-exome sequencing of 29 Japanese ovarian cancer patients and detected the NBS1 I171V variant, which is estimated to exist at a rate of approximately 0.15% in healthy human populations, in one patient. To clarify whether this variant indeed contributes to chromosomal radiosensitivity, we generated NBS1 I171V variant homozygous knock-in HCT116 cells and mice using the CRISPR/Cas9 system. Radiation-induced micronucleus formation and chromosomal aberration frequency were significantly increased in both HCT116 cells and mouse embryonic fibroblasts (MEFs) with knock-in of the NBS1 I171V variant compared with the levels in wild-type cells. These results suggested that the NBS1 I171V variant might be a genetic factor underlying individual differences in chromosomal radiosensitivity.


Assuntos
Alelos , Substituição de Aminoácidos , Variação Biológica da População/genética , Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica/efeitos da radiação , Mutação , Proteínas Nucleares/genética , Tolerância a Radiação/genética , Sítios de Ligação , Biomarcadores Tumorais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Humanos , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/radioterapia , Ligação Proteica , Radiação Ionizante
5.
J Radiat Res ; 62(4): 557-563, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912931

RESUMO

The Commission for 'Corresponding to Radiation Disaster of the Japanese Radiation Research Society' formulated a description of potential health effects triggered by tritium. This was in response to the issue of discharging water containing tritium filtered by the Advanced Liquid Processing System (ALPS), generated and stored in Fukushima Daiichi Nuclear Power Station after the accident. In this review article, the contents of the description, originally provided in Japanese, which gives clear and detailed explanation about potential health effects triggered by tritium based on reliable scientific evidence in an understandable way for the public, were summarized. Then, additional information about biochemical or environmental behavior of organically bound tritium (OBT) were summarized in order to help scientists who communicate with general public.


Assuntos
Medicina Baseada em Evidências , Saúde Pública , Trítio/efeitos adversos , Carcinogênese/patologia , Humanos , Exposição à Radiação , Radiação Ionizante
6.
J Radiat Res ; 59(suppl_2): ii75-ii82, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528422

RESUMO

DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) are the initial and critical step in major alteration of genetic information and cell death. To prevent deleterious effects, DNA repair systems recognize and re-join DNA DSBs in human cells. It has been suggested that there are individual differences in radiosensitivity within human populations, and that variations in DNA repair genes might contribute to this heterogeneity. Because confounding factors, including age, gender, smoking, and diverse genetic backgrounds within human populations, also influence the cellular radiosensitivity, to accurately measure the effect of candidate genetic variations on radiosensitivity, it is necessary to use human cultured cells with a uniform genetic background. However, a reverse genetics approach in human cultured cells is difficult because of their low level of homologous recombination. Engineered endonucleases used in genome editing technology, however, can enable the local activation of DNA repair pathways at the human genome target site to efficiently introduce genetic variations of interest into human cultured cells. Recently, we used this technology to demonstrate that heterozygous mutations of the ATM gene, which is responsible for a hyper-radiosensitive genetic disorder, ataxia-telangiectasia, increased the number of chromosomal aberrations after IR. Thus, understanding the heterozygous mutations of radiosensitive disorders should shed light on the genetic basis underlying individual differences in radiosensitivity within human populations.


Assuntos
Edição de Genes/métodos , Genética Populacional , Tolerância a Radiação/genética , Reparo do DNA/genética , Predisposição Genética para Doença , Humanos , Mutação/genética
7.
J Radiat Res ; 59(suppl_2): ii11-ii17, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053826

RESUMO

It is difficult to distinguish radiation-induced events from spontaneous events during induction of stochastic effects, especially in the case of low-dose or low-dose-rate exposures. By using a hypersensitive system for detecting somatic mutations at the HPRT1 locus, we investigated the frequency and spectrum of mutations induced by low-dose X-rays. The mutant frequencies induced by doses of >0.15 Gy were statistically significant when compared with the spontaneous frequency, and a clear dose dependency was also observed for mutant frequencies at doses of >0.15 Gy. In contrast, mutant frequencies at doses of <0.1 Gy occurred at non-significant levels. The mutation spectrum in HPRT-deficient mutants revealed that the type of mutations induced by low-dose exposures was similar to that seen in spontaneous mutants. An apparent change in mutation type was observed for mutants induced by doses of >0.2 Gy. Our observations suggest that there could be a critical dose for mutation induction at between 0.1 Gy and 0.2 Gy, where mutagenic events are induced by multiple DNA double-strand breaks (DSBs). These observations also suggest that low-dose radiation delivered at doses of <0.1 Gy may not result in DSB-induced mutations but may enhance spontaneous mutagenesis events.


Assuntos
Mutação/genética , Radiação , Animais , Linhagem Celular , Cromossomos Humanos X/genética , Cricetinae , Relação Dose-Resposta à Radiação , Loci Gênicos , Humanos , Hipoxantina Fosforribosiltransferase/deficiência , Hipoxantina Fosforribosiltransferase/genética , Modelos Genéticos , Mutagênese , Taxa de Mutação , Raios X
8.
Sci Rep ; 7(1): 5996, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729543

RESUMO

Ionizing radiation (IR) induces DNA double-strand breaks (DSBs), which are an initial step towards chromosomal aberrations and cell death. It has been suggested that there are individual differences in radiosensitivity within human populations, and that the variations in DNA repair genes might determine this heterogeneity. However, it is difficult to quantify the effect of genetic variants on the individual differences in radiosensitivity, since confounding factors such as smoking and the diverse genetic backgrounds within human populations affect radiosensitivity. To precisely quantify the effect of a genetic variation on radiosensitivity, we here used the CRISPR-ObLiGaRe (Obligate Ligation-Gated Recombination) method combined with the CRISPR/Cas9 system and a nonhomologous end joining (NHEJ)-mediated knock-in technique in human cultured cells with a uniform genetic background. We generated ATM heterozygous knock-out (ATM +/-) cell clones as a carrier model of a radiation-hypersensitive autosomal-recessive disorder, ataxia-telangiectasia (A-T). Cytokinesis-blocked micronucleus assay and chromosome aberration assay showed that the radiosensitivity of ATM +/- cell clones was significantly higher than that of ATM +/+ cells, suggesting that ATM gene variants are indeed involved in determining individual radiosensitivity. Importantly, the differences in radiosensitivity among the same genotype clones were small, unlike the individual differences in fibroblasts derived from A-T-affected family members.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Edição de Genes , Individualidade , Mutação/genética , Tolerância a Radiação/genética , Automação , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Clonais , Citocinese , Fibroblastos/metabolismo , Fibroblastos/patologia , Heterozigoto , Humanos , Testes para Micronúcleos , Modelos Biológicos , Recombinação Genética/genética
9.
J Radiat Res ; 55(4): 690-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24614819

RESUMO

Ionizing radiation induces DNA double-strand breaks (DSBs). Mammalian cells repair DSBs through multiple pathways, and the repair pathway that is utilized may affect cellular radiation sensitivity. In this study, we examined effects on cellular radiosensitivity resulting from functional alterations in homologous recombination (HR). HR was inhibited by overexpression of the forkhead-associated (FHA) domain-mutated NBS1 (G27D/R28D: FHA-2D) protein in HeLa cells or in hamster cells carrying a human X-chromosome. Cells expressing FHA-2D presented partially (but significantly) HR-deficient phenotypes, which were assayed by the reduction of gene conversion frequencies measured with a reporter assay, a decrease in radiation-induced Mre11 foci formation, and hypersensitivity to camptothecin treatments. Interestingly, ectopic expression of FHA-2D did not increase the frequency of radiation-induced somatic mutations at the HPRT locus, suggesting that a partial reduction of HR efficiency has only a slight effect on genomic stability. The expression of FHA-2D rendered the exponentially growing cell population slightly (but significantly) more sensitive to ionizing radiation. This radiosensitization effect due to the expression of FHA-2D was enhanced when the cells were irradiated with split doses delivered at 24-h intervals. Furthermore, enhancement of radiation sensitivity by split dose irradiation was not seen in contact-inhibited G0/G1 populations, even though the cells expressed FHA-2D. These results suggest that the FHA domain of NBS1 might be an effective molecular target that can be used to induce radiosensitization using low molecular weight chemicals, and that partial inhibition of HR might improve the effectiveness of cancer radiotherapy.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Proteínas Nucleares/genética , Tolerância a Radiação/genética , Animais , Proteínas de Ciclo Celular/química , Linhagem Celular , Cricetinae , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Células HeLa , Recombinação Homóloga , Humanos , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
J Cell Sci ; 127(Pt 4): 763-72, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24357716

RESUMO

The E3 ubiquitin ligase RNF20 regulates chromatin structure through ubiquitylation of histone H2B, so that early homologous recombination repair (HRR) proteins can access the DNA in eukaryotes during repair. However, it remains unresolved how RNF20 itself approaches the DNA in the presence of chromatin structure. Here, we identified the histone chaperone FACT as a key protein in the early steps of HRR. Depletion of SUPT16H, a component of FACT, caused pronounced defects in accumulations of repair proteins and, consequently, decreased HRR activity. This led to enhanced sensitivity to ionizing radiation (IR) and mitomycin-C in a fashion similar to RNF20-deficient cells, indicating that SUPT16H is essential for RNF20-mediated pathway. Indeed, SUPT16H directly bound to RNF20 in vivo, and mutation at the RING-finger domain in RNF20 abolished its interaction and accumulation, as well as that of RAD51 and BRCA1, at sites of DNA double-strand breaks (DSBs), whereas the localization of SUPT16H remained intact. Interestingly, PAF1, which has been implicated in transcription as a mediator of FACT and RNF20 association, was dispensable for DNA-damage-induced interaction of RNF20 with SUPT16H. Furthermore, depletion of SUPT16H caused pronounced defects in RNF20-mediated H2B ubiquitylation and thereby, impaired accumulation of the chromatin remodeling factor SNF2h. Consistent with this observation, the defective phenotypes of SUPT16H were effectively counteracted by enforced nucleosome relaxation. Taken together, our results indicate a primary role of FACT in RNF20 recruitment and the resulting chromatin remodeling for initiation of HRR.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Reparo de DNA por Recombinação , Fatores de Elongação da Transcrição/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Domínios RING Finger , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/química
11.
J Radiat Res ; 53(2): 250-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22510597

RESUMO

Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase (DPYD), partially inhibits homologous recombination (HR) repair and has a radiosensitizing effect as well as enhanced sensitivity to Camptothecin (CPT). DPYD is the target protein for radiosensitization by Gimeracil. We investigated the mechanisms of sensitization of radiation and CPT by DPYD inhibition using DLD-1 cells treated with siRNA for DPYD. We investigated the focus formation of various kinds of proteins involved in HR and examined the phosphorylation of RPA by irradiation using Western blot analysis. DPYD depletion by siRNA significantly restrained the formation of radiation-induced foci of Rad51 and RPA, whereas it increased the number of foci of NBS1. The numbers of colocalization of NBS1 and RPA foci in DPYD-depleted cells after radiation were significantly smaller than in the control cells. These results suggest that DPYD depletion is attributable to decreased single-stranded DNA generated by the Mre11/Rad50/NBS1 complex-dependent resection of DNA double-strand break ends. The phosphorylation of RPA by irradiation was partially suppressed in DPYD-depleted cells, suggesting that DPYD depletion may partially inhibit DNA repair with HR by suppressing phosphorylation of RPA. DPYD depletion showed a radiosensitizing effect as well as enhanced sensitivity to CPT. The radiosensitizing effect of DPYD depletion plus CPT was the additive effect of DPYD depletion and CPT. DPYD depletion did not have a cell-killing effect, suggesting that DPYD depletion may not be so toxic. Considering these results, the combination of CPT and drugs that inhibit DPYD may prove useful for radiotherapy as a method of radiosensitization.


Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Di-Hidrouracila Desidrogenase (NADP)/antagonistas & inibidores , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Doses de Radiação
12.
Cancer Sci ; 102(9): 1712-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21668582

RESUMO

Gimeracil (5-chloro-2, 4-dihydroxypyridine) is an inhibitor of dihydropyrimidine dehydrogenase (DPYD), which degrades pyrimidine including 5-fluorouracil in the blood. Gimeracil was originally added to an oral fluoropyrimidine derivative S-1 to yield prolonged 5-fluorouracil concentrations in serum and tumor tissues. We have already reported that gimeracil had radiosensitizing effects by partially inhibiting homologous recombination (HR) in the repair of DNA double strand breaks. We investigated the mechanisms of gimeracil radiosensitization. Comet assay and radiation-induced focus formation of various kinds of proteins involved in HR was carried out. siRNA for DPYD were transfected to HeLa cells to investigate the target protein for radiosensitization with gimeracil. SCneo assay was carried out to examine whether DPYD depletion by siRNA inhibited HR repair of DNA double strand breaks. Tail moments in neutral comet assay increased in gimeracil-treated cells. Gimeracil restrained the formation of foci of Rad51 and replication protein A (RPA), whereas it increased the number of foci of Nbs1, Mre11, Rad50, and FancD2. When HeLa cells were transfected with the DPYD siRNA before irradiation, the cells became more radiosensitive. The degree of radiosensitization by transfection of DPYD siRNA was similar to that of gimeracil. Gimeracil did not sensitize DPYD-depleted cells. Depletion of DPYD by siRNA significantly reduced the frequency of neopositive clones in SCneo assay. Gimeracil partially inhibits the early step in HR. It was found that DPYD is the target protein for radiosensitization by gimeracil. The inhibitors of DPYD, such as gimeracil, could enhance the efficacy of radiotherapy through partial suppression of HR-mediated DNA repair.


Assuntos
Reparo do DNA , Di-Hidrouracila Desidrogenase (NADP)/antagonistas & inibidores , Piridinas/farmacologia , Radiossensibilizantes/farmacologia , Recombinação Genética , Linhagem Celular Tumoral , Inibidores Enzimáticos , Células HeLa , Humanos , RNA Interferente Pequeno/farmacologia , Transfecção
13.
Mol Cell ; 41(5): 515-28, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21362548

RESUMO

The E3 ubiquitin ligase RNF20 regulates chromatin structure by monoubiquitinating histone H2B in transcription. Here, we show that RNF20 is localized to double-stranded DNA breaks (DSBs) independently of H2AX and is required for the DSB-induced H2B ubiquitination. In addition, RNF20 is required for the methylation of H3K4 at DSBs and the recruitment of the chromatin-remodeling factor SNF2h. Depletion of RNF20, depletion of SNF2h, or expression of the H2B mutant lacking the ubiquitination site (K120R) compromises resection of DNA ends and recruitment of RAD51 and BRCA1. Consequently, cells lacking RNF20 or SNF2h and cells expressing H2B K120R exhibit pronounced defects in homologous recombination repair (HRR) and enhanced sensitivity to radiation. Finally, the function of RNF20 in HRR can be partially bypassed by forced chromatin relaxation. Thus, the RNF20-mediated H2B ubiquitination at DSBs plays a critical role in HRR through chromatin remodeling.


Assuntos
Cromatina/química , Regulação da Expressão Gênica , Histonas/química , Síndrome de Quebra de Nijmegen/metabolismo , Recombinação Genética , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Proteína BRCA1/química , Linhagem Celular Tumoral , Metilação de DNA , Reparo do DNA , Células HeLa , Humanos , Rad51 Recombinase/química , Fatores de Tempo , Transcrição Gênica
14.
Radiother Oncol ; 96(2): 259-66, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20584556

RESUMO

BACKGROUND AND PURPOSE: 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. METHODS AND MATERIALS: We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. gamma-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. RESULTS: Results of gamma-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. CONCLUSIONS: Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.


Assuntos
Antineoplásicos/farmacologia , Piridinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos
15.
J Biol Chem ; 284(40): 27065-76, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19674975

RESUMO

DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. The steric hindrance imposed by cross-linked proteins (CLPs) will hamper DNA transactions, such as replication and transcription, posing an enormous threat to cells. In bacteria, DPCs with small CLPs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed exclusively by RecBCD-dependent homologous recombination (HR). Here we have assessed the roles of NER and HR for DPCs in mammalian cells. We show that the upper size limit of CLPs amenable to mammalian NER is relatively small (8-10 kDa) so that NER cannot participate in the repair of chromosomal DPCs in mammalian cells. Moreover, CLPs are not polyubiquitinated and hence are not subjected to proteasomal degradation prior to NER. In contrast, HR constitutes the major pathway in tolerance of DPCs as judged from cell survival and RAD51 and gamma-H2AX nuclear foci formation. Induction of DPCs results in the accumulation of DNA double strand breaks in HR-deficient but not HR-proficient cells, suggesting that fork breakage at the DPC site initiates HR and reactivates the stalled fork. DPCs activate both ATR and ATM damage response pathways, but there is a time lag between two responses. These results highlight the differential involvement of NER in the repair of DPCs in bacterial and mammalian cells and demonstrate the versatile and conserved role of HR in tolerance of DPCs among species.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , DNA/metabolismo , Desoxirribonucleotídeos/genética , Proteínas/metabolismo , Recombinação Genética , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Proteína BRCA2/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromossomos/metabolismo , Cricetinae , DNA/química , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Decitabina , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Formaldeído/farmacologia , Histonas/metabolismo , Humanos , Peso Molecular , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/química , Rad51 Recombinase/metabolismo
16.
J Radiat Res ; 50(5): 441-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19506344

RESUMO

To study mechanisms which could be involved in the reverse dose rate effect observed during mutation induction after exposure to high LET radiation, synchronized mouse L5178Y cells were exposed to carbon 290 MeV/n beams with different LET values at the G2/M, G1, G1/S or S phases in the cell cycle. The frequency of Hprt-deficient (6-thioguanine-resistant) mutant induction was subsequently determined. The results showed that after exposure to high LET value radiation (50.8 and 76.5 keV/microm), maximum mutation frequencies were seen at the G2/M phase, but after exposure to lower LET radiation (13.3 keV/microm), the highest mutation frequencies were observed at the G1 phase. The higher LET beam always produced higher mutation frequencies in the G2/M phase than in the G1 phase, regardless of radiation dose. These results suggest that cells in the G2/M phase is hyper-sensitive for mutation induction from high LET radiation, but not to mutation induction from low LET radiation. Molecular analysis of mutation spectra showed that large deletions (which could include almost entire exons) of the mouse Hprt gene were most efficiently induced in G2/M cells irradiated with high LET radiation. These entire exon deletions were not as frequent in cells exposed to lower LET radiation. This suggests that inappropriate recombination repair might have occurred in response to condensed damage in condensed chromatin in the G2/M phase. In addition, by using a hyper-sensitive mutation detection system (GM06318-10 cells), a reverse dose-rate effect was clearly observed after exposure to carbon beams with higher LET values (66 keV/microm), but not after exposure to beams with lower LET values (13.3 keV/microm). Thus, G2/M sensitivity towards mutation induction, and the dependence on radiation LET values could both be major factors involved in the reverse dose rate effect produced by high LET radiation.


Assuntos
Ciclo Celular/efeitos da radiação , Leucemia/genética , Leucemia/patologia , Transferência Linear de Energia , Mutagênese/efeitos da radiação , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Camundongos , Doses de Radiação , Tolerância a Radiação
17.
Biochem Biophys Res Commun ; 380(4): 752-7, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19338747

RESUMO

Phosphorylated histone H2AX (gamma-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with gamma-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether gamma-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a gamma-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-gamma-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, gamma-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Linhagem Celular , Ativação Enzimática , Histonas/genética , Humanos , Fosforilação
18.
Radiat Res ; 170(3): 307-15, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18763856

RESUMO

We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin-, Sca-1- and c-Kit+ in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1+/Gr-1+) cells, which were descendants of Lin-, Sca-1- and c-Kit+ cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19+/B220+) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.


Assuntos
Adaptação Fisiológica/fisiologia , Citocinas/metabolismo , Células Mieloides/fisiologia , Células Mieloides/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Irradiação Corporal Total/métodos , Adaptação Fisiológica/efeitos da radiação , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Tolerância a Radiação
19.
J Radiat Res ; 49(5): 451-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18772547

RESUMO

In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Hidrolases Anidrido Ácido , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Humanos , Proteína Homóloga a MRE11 , Transdução de Sinais/fisiologia
20.
DNA Repair (Amst) ; 7(10): 1705-16, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18644472

RESUMO

DNA damage induced apoptosis, along with precise DNA damage repair, is a critical cellular function, and both of these functions are necessary for cancer prevention. The NBS1 protein is known to be a key regulator of DNA damage repair. It acts by forming a complex with Rad50/Mre11 and by activating ATM. We show here that NBS1 regulates a novel p53 independent apoptotic pathway in response to DNA damage. DNA damage induced apoptosis was significantly reduced in NBS1 deficient cells regardless of their p53 status. Experiments using a series of cell lines expressing mutant NBS1 proteins revealed that NBS1 is able to regulate the activation of Bax and Caspase-3 without the FHA, Mre11-binding, or the ATM-interacting domains, whereas the phosphorylation sites of NBS1 were essential for Bax activation. Expression of apoptosis-related transcription factors such as E2F1 and their downstream pro-apoptotic factors were not related to this apoptosis induction. Interestingly, NBS1 regulates a novel Bax activation pathway by disrupting the Ku70-Bax complex which is required for activation of the mitochondrial apoptotic pathway. This dissociation of the Ku70-Bax complex can be mediated by acetylation of Ku70, and NBS1 can function in this process through a protein-protein interaction with Ku70. Thus, NBS1 is a key protein involved in the prevention of carcinogenesis, not only through the precise repair of damaged DNA by homologous recombination (HR) but also by its role in the elimination of inappropriately repaired cells.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteína X Associada a bcl-2/metabolismo , Acetilação/efeitos dos fármacos , Animais , Antígenos Nucleares/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Galinhas , Dano ao DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Autoantígeno Ku , Proteínas Mutantes/metabolismo , Proteínas Nucleares/deficiência , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA